Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2019-07-01 - 2020-12-31

A major task is the establishment of defined conditions for cultivation of several species of mealworms (larvae of darkling beetles, Tenebrionidae) allowing the study of mechanisms of mycotoxin metabolism. The goal of WP 1 (at BOKU-DAGZ) is to produce axenic mealworms in order to determine whether or not the microbiome provides a major contribution to mycotoxin detoxification. In WP 2 experiments with the 13C-labelled toxins deoxynivalenol, zearalenone and aflatoxin B1 will be performed. Prior to application of the expensive labelled toxins it will be critical to find conditions where the mycotoxins are reproducibly consumed by the mealworms. In case uptake by feed is insufficient, toxins will be directly injected into the insect’s abdominal tract, for subsequent analysis by LC-HRMS(/MS) and MetExtract. At the Center for Analytical Chemistry at IFA-Tulln it will also be determined how much of the intake can be explained by known metabolites. First pilot experiments and literature reports indicate that about up to 90% of deoxynivalenol remain unaccounted. Using the isotope-assisted LC-HRMS(/MS) workflow and MetExtract data processing it should be possible to find new derivatives, and to assign sum formulas and tentative structures to the detected derivatives of the parent toxins. This should allow to postulate biochemical reactions and corresponding enzymes catalyzing the formation of mycotoxin metabolites. Utilizing the fully sequenced genome of Tribolium castaneum (rice flour beetle) it should be possible to identify candidate genes, which in the remaining project time will be tested by heterologous expression. There is preliminary evidence that detoxification may be inducible in mealworms. Therefore, the main task of the WP 3 at the FH Tulln is to use proteomics methods to search for differences in the proteome of mealworms raised on toxin free compared to artificially contaminated feed, and to determine by peptide sequencing which genes may be responsible for the differentially formed proteins.
Research project (§ 26 & § 27)
Duration : 2019-01-01 - 2022-12-31

Development on 100% bio-based NFC regarding formulations (e.g. fiber types) and processing (e.g. injection moulding and extrusion are in the focus) will be continued. Processes for the post-treatment of moulded parts by brushing, painting, coating, printing will be further evaluated. Extension of the permanent accompanying literature study with reference to new bioplastics and production of filaments for 3D printing.
Research project (§ 26 & § 27)
Duration : 2017-06-01 - 2021-05-31

The application of biologic soil additives based on beneficial microbes is an interesting and durable alternative to existing fertilizing methods. A mixture of beneficial microbes will be developed, optimized to control the fungal genus Fusarium. Fusarium diseases on small grain cereals (Fusarium head blight, FHB) and on maize (Fusarium ear rot, FER) are one of the most relevant problems in agriculture. FHB and FER induce yield losses but of main concern are quality losses due to contamination of the grain with mycotoxins that are harmful to humans and animals. Maximum toxin content in food is worldwide regulated. To date, no effective control of FHB/FER is possible: an integrated approach with proper soil preparation, crop rotation, use of fungicides and resistant plant varieties is advised but innovative control strategies are urgently needed. Fusarium causing FHB and FER can only survive in intact infected crop debris on which the fungus produces spores in the next spring. The spores can reach the flowering cereal or maize ear where infection can occur. The development of a preventive microbial soil or plant additive reducing the production of spores on crop debris or increasing plant resistance is a promising approach to control Fusarium. By reducing inoculum, infection pressure and probability of toxin contamination will be reduced. We follow 4 complementary strategies to reach our goal. We will select microbes that: 1) are specialised in fast decay of the crop debris. Fusarium cannot survive in the soil and uses colonized crop debris as a refugium. 2) show an antagonistic activity against Fusarium, inhibiting growth and sporulation on the crop debris. 3) induce systemic induced resistance: this strategy activates the natural plant defence mechanisms. 4) We will apply Ca2+, Mg2+ and Si3+. These cations enforce plant wall strength and Mg2+ inhibits mycotoxin production. 5) A mixture of microbes acting via mechanism of 1-3 plus 4, resulting in additive effect on Fusarium. To reach our goals we follow an approach of selection of microbes in the lab and greenhouse, in small field plots and in field experiments. The result will be a new product composed of a mixture of several microbes controlling Fusarium via complementary mechanisms. A company will be founded to commercialise the innovative product. The product will reduce the risk for toxin contaminated grains used for food and feed and will in the end contribute to public health.

Supervised Theses and Dissertations