
Tapping Bacterial Resources –
Accessing Secondary Metabolites of the

Uncultivated

Nature is the source for a vast diversity of
metabolites in use today in various applications,
which encompass only a small fraction of the
existing repertoire. The huge diversity reflects the
biological role of secondary metabolites, which
are required as mediators in interactions between
organisms and their environment, stressing their
important roles as signals and toxins.
Natural products and their derivatives represent a
large fraction of today’s approved pharmaceutical
drugs. More than 2/3 of antibiotic drugs are natural
products or their semi-synthetic derivatives.
Microorganisms, above all bacteria of the genus
Streptomyces sp., are the main sources for novel
lead discovery in antibiotic research.
Resistances to almost every antibiotic placed into
clinical practice so far have occurred, which has led
to serious threats for public health regarding
multidrug resistances. Despite the urgent need for
novel antibiotics to conquest existing and novel
diseases, including re-occurring problematic
diseases such as tuberculosis, the numbers of
antibiotics in the pipeline of approval have been
decreasing in the last years.
The reason for diminishing numbers of potential
antibiotic candidates lies partly in the withdrawal
of pharmaceutical companies from the cost-
intensive antibiotic development, especially in the
field of natural products. At the same time, the
usage of combinatorial chemistry – providing less
molecular complexity than exists in many natural
products and without evolutionary pre-screen – has
been rather unproductive. Another reason is that
the most abundant naturally occurring and easy
accessible antibiotics –the “low hanging fruits” –
(e.g. actinomycin, chloramphenicol, streptomycin,
and tetracycline) have been found already. This
results in the often labor-intensive re-discovery of
already well known antibiotics. Nevertheless, yet
undiscovered natural products are far from being
depleted. This has been exemplified for antibiotics
produced by the well studied genus Streptomyces
sp., of which an estimated fraction of only less than
5% has so far been accessed.

Here, we present strategies for discovering novel
secondary metabolites of bacterial origin.
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The majority of bacteria is not accessible by cultivation.

This represents a huge reservoir of genetic information

encoding for unknown and unexploited secondary metabolites.

Community analysis

In Austrian Pine forests:
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Clusters of biosynthesis and resistance
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Avoidance of re-isolation of well known metabolites by sequencing of defined clones

prnA – prnD: in Pseudomonas and Burkholderia spp., cluster
encompass 6000bp – Burkholderia pyrrocinia as known
pyrrolnitrin producer:

Pyrrolnitrin has antifungal and activity against gram-positive
bacteria

Library as positive screening control in

Proof-of-concept of micropatterning and

microfluidic chip assays

Patterning of reporter cells. Cells are picked into microwells

by capillary forces. After transfer to standard growing plate by

stamping techniques, each cell forms a micro colony containing

metagenome clones clearly separated from the neighboring

microcolonies.
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