A rapid immunodiagnostic strip test for the quantitative determination of DON in wheat

A. Molinelli1, K. Grossalber1, S. Baumgartner1, M. Z. Zheng2, E. M. Binder3, R. Krska1

1 Christian Doppler Laboratory for Mycotoxin Research
Center for Analytical Chemistry,
Department for Agrobiotechnology (IFA-Tulln),
University of Natural Resources and Applied Life Sciences, Vienna
Konrad-Lorenz-Straße 26, A-3430 Tulln
Austria
2 Romer Labs Singapore, 3791 Jalan Bukit Morah, 159471
Singapore
3 Romer Labs Diagnostic, Technpark 1, 3430 Tulln, Austria

Introduction

Mycotoxins are secondary metabolites produced by fungal species which affect crops in the fields or after harvest and thus form a potential threat to human and animal health since they may be carcinogenic, genotoxic and immunosuppressive. The most common mycotoxins are aflatoxins (Aspergillus spp.), ochratoxins, patulin (both Aspergillus spp. and Penicillium spp.) and fusarium toxins including trichothecenes and zearalenone (both Fusarium spp.). Deoxynivalenol (DON) belongs to the type-B trichothecenes growing on grains such as wheat, maize, barley and oat.

The maximum level of DON in unprocessed cereals other than durum wheat, oat, and maize is set to 1250 µg/kg and in unprocessed durum wheat, oat, and maize to 1750 µg/kg (EC 1881/2006). The U.S. advisory level for DON in finished wheat products is set to 1000 µg/kg (FDA 1993). Cost effective and rapid on-site mycotoxin testing methods have increasingly gained importance in the last few years. A lateral flow device (LFD) for the quantitative determination of DON was developed. The presented one-step rapid immunochromatographic strip tests allow quantitative sample screening within a few minutes.

Experimental

Strip production:
The strip test is composed of different overlapping membranes. A nitrocellulose membrane, onto which the reagents for test and control line were immobilized by using a contact tip dispenser (BioDot, Irvine, CA), and a nick membrane for absorbing excess liquid were used. The test line was sprayed with DON mycotoxin coupled to a carrier protein and the control line with an anti-species specific antibody used for verifying the correct test performance.

Sample preparation:
1. Grind a representative wheat sample
2. Extract 10 g of sample 1:8 (w/v) with distilled water by shaking for 3 min
3. Allow extract to settle down for 10 min

Test procedure:
50 µL of wheat extract are added to a microtiter well together with ready-to-use gold conjugate mix. The strip is inserted into the well. The result is read out after 3 minutes by using a handheld reader. The test is valid when the control line is visible.

Results and Discussion

Strip test optimization:
Several optimizations were carried out for the production of the quantitative DON strip:
- Finding the proper monoclonal antibody to gold colloidal ratio (see Figure 1)
- Comparing different protein-toxin conjugates such as bovine serum albumin, ovalbumin, and conalbumin A (see Figure 2)

Matrix-matched calibration:
A highly contaminated wheat sample was extracted and the extract diluted in a concentration range from 25 to 1250 µg/kg with blank extract and measured by a handheld photometric reader. A calibration curve was performed as e.g. shown on Figure 3 which was used for the determination of the DON concentration range in unknown samples.

Measurement of naturally contaminated samples:
Naturally contaminated wheat samples with a concentration range from 50 ppb to 1300 µg/kg have been measured. An LC-MS/MS method as described by Sulyok et al. (Rapid Commun. Mass Spectrom. 20, 2649-2659, 2006) was used as reference method for the characterization of the naturally contaminated samples.

Furthermore, the precision of the DON strip has been studied by running 28 strip tests on a wheat sample naturally contaminated with 997 µg/kg DON as shown on Table 1. Results were in agreement with the reference measurements obtained for DON. The RSD of the test was 12%.

Conclusion and Outlook

Rapid strip tests for the quantitative determination of deoxynivalenol in wheat and wheat flour have been developed. With no sample clean up required, an extraction time of 3 minutes, and a read out time of 8 minutes, the overall test time was reduced to 8 minutes.

The quantitative strip test can be used for the determination of DON in the concentration range of 0 to 1300 ppb with a photometric reflectance reader. The strip test will be tuned for further commodities such as maize, dried distillers grain, oat and barley.

Correspondence should be addressed to:
Dr. Alexandra Molinelli
alexandra.molinelli@boku.ac.at

Acknowledgements
The authors thank the Christian Doppler Research Association and the state of Lower Austria (Technopol-Program) for financial support.

Table 1: Measurement of strip test reproducibility, Wheat sample with DON concentration of 997 µg/kg.

Figure 1: Changes in signal intensity with the protein type used in mycotoxin protein-conjugates.

Figure 2: Photometric reflectance reader.

Figure 3: Matrix-matched calibration of DON with test strip with naturally contaminated wheat sample with blank extract (1:8 ratio) with test material 997 µg/kg.

Figure 4: Measured naturally contaminated wheat samples, LC-MS-MS method. RSD of DON strip test results vs. reference LC-MS-MS method.

Figure 5: The linear range selected for method development is shown on Figure 3 (see square).

Figure 6: A linear calibration of DON from 0 to 1300 µg/kg with spike and strip test 

Table 2: Measurement of strip test reproducibility, Wheat sample with DON concentration of 997 µg/kg.