Universität für Bodenkultur Wien

University of Natural Resources and Life Sciences, Vienna

Curriculum

for the Master's Programme in

Programme classification no. 066 429

Effective date: 1.10.2017

Contents

§ 1	Qualification profile	3
§ 2	Admission requirements	5
§ 3	Programme structure	5
§ 4	Compulsory courses	6
§ 5	Elective courses	20
§ 6	Free electives	32
§ 7	Master's thesis	32
§ 8	Completion of the Master's Programme	32
§ 9	Academic degree	32
§ 10	Examination regulations	32
§ 11	Transitional provisions	33
§ 12	Effective date	33
Annex A	A Types of courses	34

§ 1 QUALIFICATION PROFILE

The Master's Programme in Mountain Forestry is a degree programme which serves to deepen and extend students' prevocational academic education, building on the basis provided by a bachelor degree programme (§ 51 [2] item 5 of the Universities Act UG 2002, Federal Law Gazette BGBI I no. 81/2009). The programme fulfils the requirements of Directive 2005/36/EC on the recognition of professional qualifications, article 11, letter e.

1a) Knowledge and personal and professional skills

Graduates of the Master's Programme in Mountain Forestry have specialised knowledge on ecological characteristics of mountain forests, on the social and economical dynamics within mountain regions and on silvicultural measures and technical methods suitable for and adapted to mountain environments. They can analyse complex ecological and socio-economic settings in mountain regions and their interactions. They know participatory methods in development research and are able to analyse multiple stakeholder interests. Based on the knowledge of ecological and socio-economic characteristics, their ability to apply analytical tools and their command of site adapted silvicultural practices, they are able to sustainably manage mountain forests as well as to plan and implement forest conservation schemes.

They can develop, evaluate and justify sustainable forest management concepts and can autonomously lead the implementation of such concepts in different institutional settings.

Based on participating in compulsory modules, graduates of the Master's Programme in Mountain Forestry gain the following qualifications in the following fields of expertise:

Ecology of Mountain Forests:

Master's Programme in Mountain Forestry graduates are able to describe ecological characteristics of mountain forest ecosystems, identify site specific limiting ecological factors, describe natural dynamics and identify the ecological effects of management strategies on mountain forest ecosystems based on these specific characteristics.

Economics and Social Science:

Master's Programme in Mountain Forestry graduates are able to characterize the role of specific social and economical settings of sustainable natural resource management of mountain regions. They are able to apply scientific methods including participatory approaches for analyzing social and economical characteristics of mountain regions. They recognize the role of multiple stakeholder interests for management of mountain forests and are able to integrate these into management strategies which they develop and / or implement.

Inventory of mountain forest resources and resource monitoring tools:

Master's Programme in Mountain Forestry graduates are able to identify, develop and implement suitable methods for resource inventories and monitoring, thereby ensuring sustainability of resource use in forests.

Forest Engineering:

Master's Programme in Mountain Forestry graduates are able to identify, develop and implement adapted and appropriate technological methods for sustainable management of mountain forests.

Forest Management for Ecosystem Services:

Master's Programme in Mountain Forestry graduates are able to integrate ecological, socio-economical characteristics of mountain regions, analyse interactions between these factors and derive management strategies for sustainable provision of multiple ecosystem services.

In at least in one of these fields, students specialise by obtaining qualifications from elective courses and by carrying out their diploma thesis.

1b) Professional qualifications

The Master's Programme in Mountain Forestry delivers knowledge to enable a broad approach to the management of mountain forest areas with special emphasis on ecological, social and economical circumstances of developing countries.

Master's Programme in Mountain Forestry graduates contribute significantly to the conservation and sustainable management of forests in their home countries. Master's Programme in Mountain Forestry graduates work in governmental organisations, non-governmental organisations (NGO), and national parks in conservation and natural resource management. They work in international organisations as consultants and as experts in research for development in mountain regions.

Learning outcome Master's Programme in Mountain Forestry:

§ 2 ADMISSION REQUIREMENTS

Admission to the Master's Programme in Mountain Forestry is conditional on the successful completion of a degree (Bachelor's/Master's or equivalent) in Forestry or a related discipline from an accredited university or university-like institution must show competences in basics in natural sciences, economics, social sciences as well as technical sciences.

In particular, applicants have to proof that they passed at least one course dealing with each of the following subjects during their academic study:

- · Mathematics or statistics,
- · Chemistry,
- Botany, ecology,
- · Zoology, entomology or wildlife studies,
- Silviculture.
- Economics and social sciences,
- Technical sciences.

Eligibility for admission to the Master's Programme in Mountain Forestry has to be established by proof that these conditions are met. If requirements listed above are not fulfilled, applicants have the possibility to acquire missing knowledge. The University of Natural Resources and Life Sciences BOKU, Vienna will decide upon courses which have to be taken in order to fulfil prerequisites of admission.

In addition, knowledge of English at level B2 (Common European Framework of Reference for Languages) is required.

§ 3 Programme structure

3a) Duration, total ECTS credits, and structure

The programme consists of courses and other requirements worth a total of 120 ECTS credits. This is equivalent to a duration of four semesters (a total of 3,000 60-minute credit hours). The programme is divided into:

Compulsory courses58 ECTS creditsMaster's thesis30 ECTS credits (excl. Master seminar)Master seminar2 ECTS creditsElective courses20 ECTS creditsFree electives10 ECTS credits

The following Modules are composed of compulsory (and elective) courses, all compulsory courses in all modules have to be taken by students:

Compulse	Compulsory courses: 58 ECTS credits (see § 4)									
Introduction	n to	Ecology of Mountain	Economic	and	Inventory	and	Forest	Man-	Forest	Engineer-
mountain	for-	Forests	social dime	ensions	Monitoring		agement	for	ing	
estry and	scien-		in mountai	n for-			goods	and		
tific skills			estry				environme	ental		
							services			

Elective courses should be used for specialisation. Students have to select <u>one</u> out of the five Modules for specialization, **10 ECTS** credits are required for completion.

Further **10 ECTS** credits have to be taken out of the elective courses pool of **at least 2 additional** modules. Modules to choose elective courses from are:

	Elective courses: total of 20 ECTS credits (see § 5) 10 ECTS credits out of one Module, 10 ECTS credits out of at least two additional Modules							
Ecology Forests	of	Mountain	Economic and social dimensions in mountain forestry	Inventory Monitoring	and	Forest Management for goods and envi- ronmental services	Forest Engineering	

3b) Three-pillar principle

The three-pillar principle is the central identifying characteristics of both the bachelor's and master's programmes offered at the University of Natural Resources and Life Sciences, Vienna. In the master's programmes, the sum of the compulsory and elective courses must be made up of at least:

- 15% technology and engineering
- 15% natural sciences
- 15% economic and social sciences, law,

The master's thesis, compulsory internship and free electives are excluded from the three-pillar rule.

3c) Courses with a restricted number of participants

For courses with a restricted number of participants, the instructor of a master's level course is entitled to give first priority to students enrolled in a master's programme (i.e. students enrolled in a bachelor's programme will only be admitted to the course if places are still available after all master's level students have been accommodated). When accepting master's program students into a course, the following priority criteria with regard to the students' course requirements shall be applied: compulsory course, elective course, free elective.

§ 4 COMPULSORY COURSES

The Master's Programme in Mountain Forestry consists of 6 Modules. Students have to take <u>all compulsory courses of all 6 Modules</u> to graduate from the Master's Programme in Mountain Forestry.

The Master's Programme in Mountain Forestry is composed of the following Modules with compulsory courses:

MODULE - Introduction to mountain forestry and scientific skills

Compulsory courses	type	SWS	ECTS
Field Camp I - Introduction to mountain forestry and forest sciences	VX	3	2
Methods of data collection, management and analysis	VU	1,5	2
Scientific methods and writing skills	VS	1	1
Master seminar	SE	2	2
Master's thesis			30

<u>Learning outcome Module – Introduction to mountain forestry and scientific skills:</u>

Knowledge

Outline scientific projects according to standards of scientific writing,

Arrange data collection and data management.

Comprehension

Identify research questions for a given project,

Construct scientific projects and data collection methods.

Application

Apply data collection methods to identified research questions,

Illustrate research work carried out, research project outline and methods.

Analysis

Appraise research work carried out,

Analyse data collected according to data analysis methods adequate for given research question,

Determine and **illustrate** results.

Synthesis

Summarise research carried out and results, **Compose** own research template.

Evaluation

Interpret results from scientific work,

Defend findings and recommendations given,

Evaluate literature and give recommendations accordingly.

<u>Learning outcome courses Module – Introduction to mountain forestry and scientific skills</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Field Camp I	Recall ecological, social,	Identify and consider	Relate the examples of	Appraise the global impor-	Recognise ecological,	Evaluate various op-
- Introduc-	economical and political	important issues of mountain	mountain forestry shown	tance of mountain forests for	social, economical and	tions of forest manage-
tion to	aspects concerning mountain	forest ecology, management	and discussed to other case	various ecosystem services	technological aspects con-	ment and conservation
Mountain	forests, their management	and conservation,	studies,		cerning mountain forests in	regarding their impact
Forestry	and conservation,	Consider the relevance of	Apply recommendations for		the field and relate their	on mountain forests and
	Name facts on mountain	research on mountain for-	studying at BOKU Univer-		interrelationship and com-	ecosystem services
	forests and forestry in Austria	ests,	sity, e. g. to choose elective		plexity	
	and in various other regions	Recognise the design of the	lectures and to find an ap-			
	of the world	MSc. Mountain Forestry	propriate topic and a super-			
		curriculum	visor for the Master thesis,			
			Develop skills to interact			
			and study in an intercultural			
			environment			
Methods of	Identify methods of data	Illustrate data collection set	Develop data collection	Debate different data analy-	Arrange data collected for	Evaluate data collection
data collec-	collection, management and	up, relevant management of	methods for given questions,	sis methods depending on	analysis,	and analysis for im-
tion, man-	analysis	data and methods of data	Employ data management	given questions,	Integrate data analysis,	provement in future
agement and		analysis,	methods	Identify best usable data	interpretation into scientific	work,
analysis		Construct research ques-		analysis for given questions	writing	Justify and argue
		tions for given projects				interpretation of results
Scientific	Recall fundamentals of sci-	Express skills in scientific	Compute and apply scien-	Plan scientific writing and	Write various types of scien-	Evaluate scientific
methods	entific work and scientific	writing and structuring of	tific visuals,	structuring of various types	tific publications	publications and presen-
and writing	communication,	various types of scientific	Develop oral scientific	of scientific publications,		tations
skills	Name theoretical and practi-	publications	presentation,	Appraise oral scientific		
	cal skills in collecting scien-		Develop research questions	presentations		
	tific information		for given projects			
Master	Present and describe Master	Discuss research question	Demonstrate results	Appraise results achieved	Formulate results of the	Interpret results of MSc.
seminar	Thesis project carried out	applied to MSc. project,	achieved during MSc. pro-	during MSc. project,	MSc. project in comparison	project
		Explain data collection,	ject		to other projects in the same	
		management and analysis			research field	
		carried out during MSc.				
		project				

MODULE - Ecology of Mountain Forests

Compulsory courses	type	SWS	ECTS
Mountain forest dynamics and fire ecology	VS	3	3
Mountain forest soils and forest nutrition	VU	2	2,5
Field Camp II -Concepts and methods of site ecology, forest growth and yield	PJ	2,5	3
Mountain forest climatology and headwater hydrology	VU	3	2,5

<u>Learning outcome Module – Ecology of Mountain Forests:</u>

Knowledge

Describe concepts of forest dynamics; disturbances and the role of fire in forest ecosystems,

Identify dominating soil processes and soil classification systems,

Define issues concerning forest management and skills needed for site classification, site mapping and growth,

Describe the interaction of climate elements and hydrological processes in mountains and mountain forests.

Comprehension

Recognize different disturbance agents for forest dynamics, plant tradeoffs leading to species co-existence, plant adaptations to fire and consequences of fire suppression.

Identify various forest soils, nutrient cycling processes and effects of soil management,

Discuss skills for site classification, site mapping and growth and yield inventories,

Interpret interactions of climate, mountains and mountain forest, and influence of forest management on head water hydrology.

Application

Apply knowledge on disturbance ecology, species coexistence and fire ecology to forest management and nature conservation.

Assess mineral nutrition, plant-soil-feedback mechanisms and management of mountain soils,

Apply site classification, site mapping and growth and yield inventories methods,

Assess the impact of climate and on management on head water hydrology in mountain regions and mountain forest.

Analysis

Analyse ecological factors driving tree regeneration and resilience of ecosystems to perturbations,

Compare different mountain forests in terms of mechanisms allowing for species coexistence,

Analyse chemical and physical properties of forest soils, calculate nutrient supply, water storage capacity etc.,

Question effects of management of mountain soils,

Combine site classification, mapping and growth/yield inventories to forest management strategies,

Appraise the effects of climate on forests in mountain regions,

Connect forest management strategies to arriving problems in head water hydrology.

Synthesis

Integrate species traits and disturbance characteristics to explain dynamic processes in mountain forest ecosystems, **Recognize** soil functions and production limits.

Generate site classifications, site mapping, as well as growth and yield inventories,

Integrate mountain specific climatic effects and hydrological processes into forest management strategies.

Evaluation

Assess the effects of different disturbances on structure and composition of mountain forest ecosystems,

Assess and judge management of mountain soils,

Assess and interpret site classifications, site mapping, as well as growth and yield inventories,

Evaluate these mountain specific forest management procedures and their effects on hydrological processes.

<u>Learning outcome courses Module – Ecology of Mountain Forests</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Forest dynam-	Describe different concepts	Recognize the role of	Apply knowledge of dis-	Analyse resilience of different	Recognize factors driving	Assess the consequences
ics and fire	of forest dynamics; the role	difference disturbance	turbance ecology and	mountain forest ecosystems to	mountain forest dynamics	of fire regulation and
ecology	of fire in forest ecosystems	agents for forest dynam-	species coexistence to	perturbations	Integrate species traits and	suppression in different
	Identify disturbances in	ics	forest management and	Analyse ecological factors	disturbance characteristics to	mountain forest ecosys-
	mountain forest ecosystems	Describe plant tradeoffs	nature conservation	driving tree regeneration	explain dynamic processes in	tems
	Describe mechanisms	leading to species co-	Apply knowledge on fire	Compare different mountain	mountain forest ecosystems	Predict the effects of
	allowing for tree species	existence in mountain	ecology of different moun-	forests in terms of mecha-	,	different disturbances on
	coexistence in mountain	forests	tain forest ecosystems in	nisms allowing for species		structure and composition
	forest ecosystems	Describe plant adapta-	forest management and	coexistence		of mountain forest ecosys-
	Describe the ecological role	tions to fire	conservation			tems
	of fire in different mountain	Describe consequences				
	forest ecosystems	of fire suppression in				
	List different methods used	different mountain forest				
	in tree regeneration ecology	ecosystem				
Mountain	List soil classification sys-	Identify special proper-	Examine mineral nutrition	Connect mineral nutrition in	Recognize soil functions and	Assess and judge man-
forest soils	tems (incl. soil morphology);	ties of mountain soils and	in mountain forests,	mountain forests and the	production limits	agement of mountain soils
and forest	Identify dominating soil	effects of soil manage-	Assess the management	degradation of mountain soils,		
nutrition	processes; recall mineral	ment,	of mountain soils	Question the effects of man-		
	nutrition of higher plants	Differentiate various	Assess plant-soil-feedback	agement of mountain soils		
		forest soils	mechanisms	Analyze and interpret chemi-		
		Describe nutrient cycling		cal and physical properties of		
		processes		forest soils		
				Calculate nutrient supply,		
				water storage capacity etc.		
Field Camp II-	List basic skills needed for	Discuss skills needed for	Apply skills learned for	Outline site classifications,	Generate site classifications,	Assess and interpret site
Concepts and	site classification, site map-	site classification, site	site classification, site	site mapping, as well as	site mapping, as well as	classifications, site map-
methods of	ping and growth and yield	mapping and growth and	mapping and growth and	growth and yield inventories,	growth and yield inventories	ping, as well as growth
site ecology,	inventories,	yield inventories,	yield inventories,	Combine forest management		and yield inventories
forest growth	Define issues concerning	Describe and discuss	Assess strategies used	strategies for a best possible		
and yield	forest management on a	aspects of mountain	for forest management on	management strategy		
	multidisciplinary level	forest management	a multidisciplinary level			
Mountain	Describe the interaction of	Interpret interactions of	Assess the impact of	Appraise the effects of cli-	Integrate mountain specific	Evaluate these mountain
forest clima-	climate elements, mountains	climate, mountains and	climate on mountain re-	mate on forests in mountain	climatic effects on forests into	specific forest manage-
tology and	and mountain forests,	mountain forest,	gions and mountain forest,	regions	forest management strategies,	ment procedures,
headwater	Identify hydrological proc-	Recognise the influence	Examine and illustrate	Connect forest management	Explain hydrological proc-	Evaluate forest manage-
hydrology	esses in small forest catch-	of forest management on	the influence of manage-	strategies to arriving problems	esses and how they can be	ment strategies by their
	ments	head water hydrology	ment on head water hy-	in head water hydrology	affected by forest manage-	effects on hydrological
			drology		ment	processes

MODULE - Economic and social dimensions in mountain forestry

Compulsory courses	type	SWS	ECTS
Forest resource economics	VS	3	4,5
Mountain forest policy	SE	3	4,5
Participatory methods in development research and practice	SE	2	3
Project management in development co-operation	VS	3	2

<u>Learning outcome Module – Economic and social dimensions in mountain forestry:</u>

Knowledge

Describe basic concepts of environmental, forest, and managerial economics, of policy studies, participatory approaches, planning, implementation and monitoring of measures, in particular also in developing countries.

Comprehension

Understand and **explain** various concepts of costs, values, specific valuation methods for eco-system services, natural resource management theories,

Recognize the role of development projects and of different approaches of collaborative research and management within their social context.

Recognize different capabilities of local stakeholders/people for managing resources.

Application

Assess forest management from a resource economic perspective,

Apply policy analysis conception to mountain forestry issues,

Conceptualize meaningful development cooperation projects as well as state of the art participatory processes.

Analysis

Economically assess forestry operations and accounts,

Analyze the role of forest resource management institutions, forest policy instruments and stakeholder constellations for mountain forest management,

Debate stages of project cycles in the context of developing countries, as well as the integration of participatory methods in natural resource management.

Synthesis

Provide an **integrated account** of economic values of forests, considering the interrelation of various forest products and services,

Develop research approaches for mountain forest,

Plan rural development projects, their implementation and monitoring, and **design** the application of participatory methods in training examples.

Evaluation

Evaluate the economic implications of mountain forest management, research results on mountain forest policy and natural hazards prevention, rural development projects, and applications of various participatory methods.

<u>Learning outcome courses Module – Economic and social dimensions in mountain forestry</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Forest Re-	Describe basic concepts	Explain the various concepts of	Calculate forestry-specific	Assess forestry ac-	Establish the total economic	Assess economic impli-
source Eco-	of environmental econom-	cost and values, such as oppor-	ratios such as the indicating	counts at the national	value of forests,	cations of mountain
nomics	ics,	tunity cost and option value,	percent,	level,	Relate economic implications of	forestry
	Recall basic understand-	Describe valuation techniques	Assess forests from the view-	Compare various valua-	the various forest uses and	
	ing of managerial as well	such as TCM, HPM and CVM,	point of resource economics	tion techniques	services	
	as forestry economics	Discuss methodological issues				
		of forest accountancy data				
		networks				
Mountain	Outline basic concepts of	Differentiate theory vs. ideol-	Highlight burning issues in	Analyse the roles of	Develop a research design for a	Evaluate research
forest policy	social science, and policy	ogy,	sustainable mountain forest	actors and institutions in	hypothetical empirical study,	results on mountain
	studies,	Differentiate policy advice vs.	management, illustrated by	mountain forest policy	Explain factors for success in	forest policy and natural
	Describe the concepts of	policy research,	international cases,	and management as	mountain forest policies,	hazards prevention,
	sustainable forest man-	Understand forest politics and	Apply methods of policy	well as in natural haz-	Summarise insights of empirical	Interpret sociological
	agement, multiple use	policies addressing mountain	analysis on practical case	ards management and	cases of policies for mountain	questions relating to
	forestry, natural hazards	areas from international to local	studies,	policy,	forest management and natural	risk, forest policy and
	prevention as well as the	level,	Connect and relate their own	Assess the formulation,	hazards prevention	natural hazards man-
	political processes behind	Discuss different perceptions	experiences and material from	implementation and		agement
		risk in mountain forests	their home countries to theo-	effectiveness of policy		
			retical concepts and practical	instruments applied in		
			case studies	mountain forestry and		
				natural hazards man-		
				agement		
Project man-	List economic and envi-	Describe the nature and role of	Construct meaningful devel-	Debate methods of the	Plan rural development projects,	Evaluate rural develop-
agement in	ronmental constraints in	development projects as inter-	opment cooperation projects	project cycle including	Organise the implementation	ment projects
development	developing countries,	ventions into complex social	taking into account the envi-	stakeholder and problem	and monitoring of rural devel-	
co-operation	Describe methods of	systems	ronmental, socio-political and	analyses, goal-oriented	opment projects	
	planning, implementation		economic conditions in devel-	planning, monitoring and		
	and monitoring & evalua-		oping countries	evaluation in the context		
	tion employed in rural			of natural resources		
	development projects			management in develop-		
Participatory	List different participatory	Identify different epistemologies	Apply participatory methods in	ing countries Integrate participatory	Design participatory methods	Evaluate different par-
methods in	methods and approaches	of different stakeholder groups	a self-reflective mode:	methods into research	and applications based on train-	ticipatory methods
development	and how they evolved	Identify consequences of differ-	Assess strengths of different	on and management of	ing examples	Evaluate shortcomings
research and	Describe approaches and	ent approaches of collaborative	participative approaches	natural resources	Ing examples	of professional practice
practice	methods used in develop-	research and management	Master methods in different	Hatural resources		or professional practice
practice	ing countries and why they	Recognise capabilities of local	professional roles (notably as			
	are used	people to manage resources	researcher, process facilitator)			
	are asea	people to manage resources	rosocionor, process racintator)	I		1

MODULE - Inventory and Monitoring

Compulsory courses	type	SWS	ECTS
Forest inventory	VU	3	3
Modelling of mountain forest ecosystems	VS	2	2,5
Remote sensing and GIS in natural resource management	UE	2	3

Learning outcome Module – Inventory and Monitoring:

Knowledge

Identify functions in forest ecosystems and the parameters for forest inventory,

Recall major modelling concepts and the parameters needed for forest ecosystem modelling,

Describe how to analyse remote sensing data and arrange information derived from remote sensing data.

Comprehension

Associate different functions and their consequences in mountain forestry,

Identify parameters collected for mountain forest inventory,

Discuss the main concepts of modelling systems and their components.

Explain the use of remote sensing data in geographic information systems (GIS).

Application

Illustrate the importance of forest stands for protection against erosion, multiple use, tourism, wood production for fuel wood,

Examine different inventory methods for mountain forest ecosystems,

Assess specific needs of forest models end-users and simulate examples,

Use remote sensing and GIS for forest classification.

Analysis

Appraise inventory methods with emphasis on mountain terrain,

Compare major modelling concepts and debate the outcome of forest modelling,

Categorize environmental data for GIS use.

Synthesis

Plan forest inventory field work and argue specific parameters measured in forest inventory of mountain forests,

Formulate modelling,

Compile a remote sensing based forest map.

Evaluation

Evaluate forest inventory methods and interpret results gained,

Appraise modelling concepts on the basis of forest management decisions, reproduction, quantification and description of forest ecosystem,

Interpret remote sensing based forest maps.

<u>Learning outcome courses Module – Inventory and Monitoring</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Forest inven-	Describe various functions	Associate different func-	Illustrate the importance of	Analyse protection against	Plan forest inventory field	Evaluate forest inven-
tory	of forest ecosystems in	tions and their conse-	protection against erosion,	erosion, multiple use, tour-	work with particular empha-	tory methods used in
	mountain forests,	quences in mountain for-	multiple use (including	ism, wood production by	sis of difficult accessibility	mountain forests,
	List parameters used for	estry,	grazing), tourism, wood	means of the socio-	and steep terrain in moun-	Interpret results gained
	forest inventory,	Identify forest inventory	production for fuel wood or	economic environment in	tain regions,	form forest inventory
	Describe specific features	parameters additionally	local market needs only,	mountain regions,	Argue specific parameters	
	of mountain forest ecosys-	collected for mountain forest	Assess different inventory	Appraise inventory methods	measured in forest inventory	
	tems (soil processes, min-	inventory,	methods for specific features	with emphasis on mountain	of mountain forests	
	eral nutrition, vegetation	Associate the specific	of mountain forest ecosys-	terrain		
	dynamics and regeneration	features of mountain forest	tems			
	ecology)	ecosystems with implica-				
		tions for management and				
		conservation				
Modelling of	Recall the three major	Differentiate the three	Assess advantages and	Compare the three major	Formulate advantages and	Appraise the three
mountain	modelling concepts applied	modelling concepts,	disadvantages in assessing	modelling concepts,	disadvantages of the three	modelling concepts on
forest eco-	within forest ecosystem	Discuss the main compo-	specific needs of forest	Debate the outcome of	major modelling concepts for	the basis of their support
systems	modelling,	nents of the three modelling	models end-users,	forest modelling by means of	the simulation examples	of forest management
	Identify parameters which	concepts,	Employ simulation exam-	the simulation examples		decisions, reproduction,
	need to be addressed in	Describe conflicting inter-	ples			quantification and de-
	forest ecosystem modelling	ests (simplicity, observability				scription of forest eco-
		and biological realism) which				system
		needed to incorporated in				
		forest modelling,				
Remote sens-	Describe how to generate	Discuss the use of remote	Develop a remote sensing	Categorize environmental	Compile a remote sensing	Interpret remote sens-
ing and GIS	information from remote	sensing data in a geographic	based forest classification,	data for the use in geo-	based forest map	ing based forest maps
in natural	sensing data,	information system	Use a geographic informa-	graphic information system		
resource	Describe how to analyse		tion system for forest classi-			
management	remote sensing data		fication			

MODULE - Forest Management for goods and environmental services

Compulsory courses	Туре	SWS	ECTS
Natural resource management in mountain forests	VS	4	4
Agro forestry in mountain regions	VS	2	2
The role of forests in mountain risk engineering	VX	2	2
Forest protection	VS	2	2

Learning outcome Module - Forest Management for goods and environmental services:

Knowledge

Outline concepts of natural forest resource management systems,

Identify mixed species land use systems and ecological interaction within them,

Outline past and recent agro forestry systems,

Identify abiotic risks, insect pests and forest tree diseases in mountain forests and afforestations.

Comprehension

Contrast concepts of natural forest resource management systems in mountain forests,

Identify characteristics of mixed land use systems and with special emphasis on mountain areas

Recognize traditional and new agro forestry systems and their socio-economic potentials,

Illustrate forest management activities and their impact on risks in mountain areas,

Contrast damaging factors in forest and natural resource management.

Application

Develop concepts of natural forest resource management systems in mountain forestry,

Assess socio-economic potentials of different agro forestry systems and mixed species land use systems for their usability in mountain areas,

Examine the correlation between risk and different forest management methods and the impact of management on natural hazards.

Assess the importance of pests, pathogens and abiotic damaging factors and strategies of disease/pest prevention.

Analysis

Appraise concepts of mountain forest management,

Illustrate and debate the socio-economic potentials and aspects of agro forestry,

Contrast different mixed species land use systems for mountain areas,

Determine reduction and measures of natural hazards,

Contrast damaging factors in forest and natural resource management.

Synthesis

Design and implement management activities and to monitor and evaluate the outcome of operations,

Design mixed species land use systems incorporating technical characteristics and socio-economical aspects,

Develop forest management strategies for enhanced protection against risks,

Design management strategies for examples of forest health problems in plantation forests.

Evaluation

Evaluate and assess the outcome of management operations,

Appraise the used mixed species land use systems and suggest strategies for improvement,

Evaluate catchment based forest management and the effects on risk reduction,

Appraise forest management strategies for various risks, pests and tree diseases.

<u>Learning outcome courses Module - Forest Management for goods and environmental services</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Natural re-	Outline concepts of natural	Contrast various concepts	Develop different concepts	Debate and appraise dif-	Design and implement	Evaluate and assess
source man-	forest resource management	of natural forest resource	of natural forest resource	ferent concepts of mountain	management activities and	the outcome of man-
agement in	systems relevant to moun-	management systems rele-	management systems used	forest management activities	to monitor and evaluate the	agement operations
mountain	tain forests	vant to mountain forests	in mountain forestry		outcome of operations	
forests						
Agroforestry	Recognize agroforestry land	Discuss different agrofor-	Assess agro forestry sys-	Contrast different agrofor-	Design an agoforestry	Appraise the current
in mountain	use systems	estry land use systems with	tems for their usability in	estry systems for mountain	system for a given mountain	land use systems for
regions	Identify ecological interac-	special emphasis on moun-	mountain areas,	areas	area incorporating technical	given areas and suggest
	tion in mixed species land	tain areas	Examine the socio-	Illustrate the socio-	characteristics and socio-	strategies for improve-
	use systems	Recognize socio-economic	economic potentials of	economic potentials and	economical aspects	ment
	Outline past and recent	potentials of agroforestry	different agro forestry sys-	aspects of agroforestry,		
	agro forestry systems	Identify ecological charac-	tems,	Debate traditional and new		
		teristics of mixed land use	Assess traditional and new	agro forestry systems for		
		systems	agro forestry systems for	their used in mountain re-		
		Explain traditional and new	their use in mountain re-	gions used in tropical and		
		agroforestry systems used in	gions	subtropical regions		
		tropical and subtropical				
		regions				
The role of	Identify the role of mountain	Recognize ecosystem	Apply knowledge of dan-	Debate the economic and	Design management strate-	Assess the role of
forests in	forests concerning natural	services of mountain forests,	gerous processes for forest	environmental effects of	gies for forests in areas	mountain forests in risk
mountain risk	hazards and related risks	Identify the protective func-	management,	mountain forests on risk in	prone to snow avalanches,	management,
engineering		tion of mountain forests	Relate natural hazards with	mountainous environments,	landslides, floods and soil	Identify the limitations
			ecosystems	Analyse the ecosystem	erosion	of biological protection
				services of mountain forests,		against natural hazards
Natural haz-	Describe viele in menutain	Fundain actal mant has a	Acces the impost of man	Determine reduction of	Davidon forest monorens	Firelinate establishment
	Describe risks in mountain	Explain catchment based	Assess the impact of man-	Determine reduction of	Develop forest management	Evaluate catchment
ards and the role of moun-	areas,	risk minimising strategies,	agement on natural hazards, Examine the correlation	natural hazards through	strategies for enhanced	based forest manage- ment and the effects on
	Recall measures against	Illustrate the impact of		forest management, Determine measures of risk	protection against risks	
tain forests in	risk in mountain areas	forest management activities on risks in mountain areas	between risk and different	reduction		risk reduction
protecting watersheds		on risks in mountain areas	forest management methods	reduction		
Forest Pro-	Name and identify abiotic	Describe forest health	Develop skills for the diag-	Appraise key factors influ-	Design management strate-	Appraise forest man-
tection	damaging factors, insect	problems and their causes,	nosis of forest health prob-	encing the occurrence of	gies for forest health prob-	agement strategies for
	pests and tree diseases in	Contrast the role of abiotic	lems,	abiotic damage, the popula-	lems,	ecosystem services in
	mountain forests, afforesta-	and biotic damaging factors	Develop and apply strate-	tion dynamics of forest pests	Integrate principles of forest	relation to various
	tions in mountains and	in natural and managed	gies of disease/pest/damage	and the epidemiology of	entomology, forest pathol-	abiotic risks, insect
	plantation forests	forests and in relation to	prevention and manage-	forest tree diseases	ogy and forest protection	pests and forest tree
		various ecosystem services,	ment,		into forest and natural re-	diseases in mountain
		Recognise the interacting	Assess the global impor-		sources management	forests, afforestations at

	factors leading to forest	tance of pests, pathogens		high altitudes and plan-
	health problems	and abiotic damaging factors		tation forests
		in forest management and		
		conservation		

MODULE - Forest Engineering

Compulsory courses	Type	SWS	ECTS
Harvesting systems for mountainous regions	VO	2	2
Field Camp III – Integrated forest management applications	PJ	2,5	3
Road network planning	VS	3	3
Cable yarding project	UE	1	1.5

Learning outcome Module - Forest Engineering:

Knowledge

Describe economic, ecologic and human dimensions of harvesting methods mountain forests,

Describe ecological, economical, technical and participative actions for mountain forest management,

Describe modern planning and evaluation methods for road network planning,

List machine elements and units used for cable yarding projects.

Comprehension

Recognize important aspects of occupational health and safety,

Distinguish forest management actions based on ecological, economical, technical and participative methods,

Identify state of the art planning methods for modern road construction,

Explain dimensions of different units for cable yarding projects.

Application

Relate economic, ecologic and human (health and safety) dimensions to various harvesting methods,

Apply forest management actions based on ecological, economical, technical and participative methods,

Apply road network planning networks for decision making,

Apply knowledge on dimensions to calculation of cable yarding project.

Analysis

Compare harvesting methods according to economical and ecological effects,

Integrate ecological, economical, technical and participative methods into forest management,

Appraise existing road networks for optimisation and maintenance needs,

Analyse on-site situation for cable yarding projects.

Synthesis

Integrate economical and ecological aspects into forest harvesting plans,

Compose forest management strategies incorporating multidisciplinary aspects,

Design road networks and prepare for construction work,

Design and implement cable yarding projects.

Evaluation

Evaluate economic, ecologic and human dimensions of harvesting methods,

Appraise multidisciplinary forest management strategies for their usability in the relevant forest area,

Evaluate and manage existing road networks,

Appraise cable yarding projects and recommend necessary dimensions of units used for future projects.

Learning outcome courses Module - Forest Engineering

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Harvesting	Describe dimensions within	Recognize important as-	Apply important aspects of	Compare various harvesting	Integrate economical and	Evaluate economic,
systems for	mountain forest harvesting	pects of occupational health	occupational health and	methods and their economi-	ecological aspects into	ecologic and human
mountainous	systems,	and safety	safety during forest harvest-	cal and ecological effects,	forest harvesting plans	dimensions of harvest-
regions	Outline economic, ecologic		ing,	Analyse the dimensions		ing methods
	and human dimensions of		Relate economic, ecologic	within mountain forest har-		
	harvesting methods		and human dimensions to	vesting systems		
			various harvesting methods			
Field Camp III	Describe ecological, eco-	Distinguish and explain	Illustrate and apply differ-	Integrate ecological, eco-	Compose and design	Appraise multidiscipli-
Integrated	nomical, technical and	different forest management	ent forest management	nomical, technical and	situation related forest man-	nary forest management
forest man-	participative actions for	actions based on ecological,	actions based on ecological,	participative methods into	agement strategies incorpo-	strategies for their us-
agement	forest management in moun-	economical, technical and	economical, technical and	forest management	rating multidisciplinary as-	ability in the relevant
applications	tainous regions	participative methods	participative methods		pects	forest area
Road network	Describe modern planning	Identify state of the art	Apply road network plan-	Appraise existing road	Design road networks and	Evaluate and manage
planning	and evaluation methods for	planning methods for mod-	ning networks for decision	networks for optimization,	prepare for construction	existing road networks
	road network planning	ern road construction	making	and maintenance needs	work	
Cable yarding	List machine elements and	Explain dimensions of units	Apply knowledge on dimen-	Analyse on-site situation for	Design a cable yarding	Appraise cable yarding
project	units used for cable yarding	used in different cable yard-	sions to calculation of cable	cable yarding projects	project,	projects,
	projects	ing projects	yarding project		Organise the implementa-	Evaluate on-site find-
					tion of a cable yarding pro-	ings and recommend
					ject	necessary dimensions of
						units used in different
						projects

§ 5 ELECTIVE COURSES

Elective courses worth a total of 20 ECTS credits are required to complete the master's programme. 10 ECTS credits have to be chosen out of the elective courses pool of 1 Module for specialisation. The remaining 10 ECTS credits have to be taken out of the elective courses pool of at least 2 Modules.

Elective courses can be chosen from the following Modules for specialisation:

MODULE – Ecology of Mountain Forests

Elective courses	Туре	SWS	ECTS
Biodiversity and conservation of mountain forests	VS	1	2
Air pollution effects on forest ecosystems	VS	2	3
Chemistry for forestry	VO	1	1
Specific methods on soil analysis	UE	1	1
Physical and selected chemical methods of soil analysis	PR	3	4,5
Forest and water	VS	2	3

Learning outcome Module – Ecology of Mountain Forests (specialisation):

Knowledge

Describe diversity concepts, evolutionary basis of diversity, and assessment and monitoring of biodiversity,

Recall methods of spectroscopy and chromatography and analytical methods of soil research,

Outline regional and global hydrological balance and causes and effects of air pollution.

Comprehension

Describe methods for managing biodiversity and factors determining species richness,

Describe disease caused by air pollution and nutrient deficiencies of plants,

Explain procedures used for physical and chemical soil analysis in the field and laboratory,

Explain hydrological balance in forests and forest stands in mountain regions.

Application

Apply knowledge on driving factors of species diversity to forest management and conservation strategies,

Define nutrient deficiencies, critical levels, critical loads and legislation,

Apply physical and chemical soil analysis methods in the field and laboratory,

Relate components of water balance to forest management and forest stand dynamics.

Analysis

Analyse biodiversity in forest ecosystems and consequences of different nature conservation approaches,

Differentiate importance, frequency, long-time effects, toxic consequences and symptom of various air pollutants,

Analyse and appraise results gained from physical and chemical soil analysis in the field and laboratory,

Examine forest management strategies on their impact on water balance.

Synthesis

Integrate species richness and habitat diversity into forest in forest management and conservation strategies,

Relate pollution sources, symptoms of air pollution disease and possible reductions,

Explain chemical and biochemical processes occurring in forest environments,

Argue results gained from physical and chemical soil analysis in the field and laboratory,

Revise factors influencing soil conditions, water quality and yield,

Identify indicators for soil and water quality degradation due to forest management.

Evaluation

Assess diversity indicators and different nature conservation approaches,

Appraise air pollutions and diminishing actions for air pollution disease,

Interpret results gained from physical and chemical soil analysis in the field and laboratory,

Decide on forest management strategies for soil condition, water quality and water yield enhancement.

<u>Learning outcome elective courses Module – Ecology of Mountain Forests (specialisation)</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Biodiversity	Describe diversity concepts	Recognize factors determin-	Apply knowledge on driving	Analyse biodiversity in	Integrate examples of	Assess values and limits
and conser-	from molecular diversity to	ing species richness,	factors of species diversity	different forest ecosystems	species richness and	of using plant species
vation of	species diversity,	Describe the convention on	to forest management and	Analyse the consequences	habitat diversity in forest in	diversity as indicator of
mountain	Describe methods for as-	biological diversity,	conservation strategies	of different nature conserva-	forest management and	overall diversity.
forests	sessment and monitoring of	Describe methods for man-	_	tion approaches in different	conservation strategies	Evaluate different nature
	biodiversity,	aging biodiversity		countries		conservation approaches
	Describe the evolutionary					in different countries
	basis of diversity					
Air pollution	List air pollution effects on	Describe symptoms and	Identify symptoms of air	Differentiate various air	Relate symptoms of air	Appraise air pollutions in
effects on	mountain forests,	biology of disease caused	pollution,	pollutants and their impor-	pollution disease to pollu-	mountainous regions,
forest eco-	List air pollutants caused by	by air pollution,	Examine possibilities of	tance, frequency, long-time	tion sources and formu-	Decide on necessary
systems	natural and anthropogenic	Explain nutrient deficiencies	reduction and monitoring	effects and toxic conse-	late possible reductions	actions to diminish dis-
	sources	of plants	systems of air pollution,	quences on forest ecosys-	for the given pollution	ease due to air pollution
			Define nutrient deficiencies,	tems,	source	on forest vegetation
			critical levels, critical loads	Associate symptoms of		
			and legislation	diseases with air pollutants		
				causing them		
Chemistry for	Recall basic tools of chem-	Identify chemical reactions	Illustrate natural chemical	Appraise the effects of	Explain chemical and	Assess the importance of
forestry	istry (atoms and molecules,	occurring in our daily life,	and biochemical processes,	chemical and biochemical	biochemical processes	chemical and biochemical
	compounds, bonding sys-	Describe chemical and	Manipulate chemicals	processes in nature	occurring in forest envi-	processes in nature
	tems, chemical reactions,	biochemical processes in	according to safe handling		ronments,	
	reaction in aqueous solution,	nature,	procedures to processes			
	stoichiometry, thermochem-	Describe safe handling				
	istry)	procedures for chemicals				
		used in forestry				
Specific	Recall analytical methods of	Explain analytical soil re-	Employ analytical soil re-	Analyse results gained from	Explain results gained	Interpret results gained
methods on	soil research,	search methods	search methods in the labo-	analytical soil research	from analytical soil re-	from analytical soil re-
soil analysis	Describe methods of spec-		ratory,	methods	search methods	search methods
	troscopy and chromatogra-		Apply methods of spectros-			
	phy		copy and chromatography			
Physical and	Recall physical and chemi-	Explain procedures used for	Apply physical and chemi-	Analyse and appraise	Argue results gained from	Interpret results gained
selected	cal analytical methods for	physical and chemical soil	cal soil analysis methods in	results gained from physical	physical and chemical soil	from physical and chemi-
chemical	soil analysis in the field and	analysis in the field and	the field and laboratory	and chemical soil analysis in	analysis in the field and	cal soil analysis in the field
methods of	laboratory	laboratory		the field and laboratory	laboratory	and laboratory
soil analysis	Basell abusinal and about	Francis bridge sign by	Coloulate the water helicing	Analyse the influence of	Davidas farest manage	Fredricate former means are
Forest and	Recall physical and chemi-	Explain hydrological bal-	Calculate the water balance	Analyse the influence of	Revise forest manage-	Evaluate forest manage-
water	cal characteristics of water,	ance within mountain re-	of forest stands,	tree species selection to	ment practices and tree	ment practices according
	Outline regional and global	gions on the example of the	Relate components of water	water balance,	species selection accord-	to their impact on soil
1	hydrological balance	Alpine region,	balance to forest manage-	Examine forest manage-	ing to their influence on	condition, water quality

	Illustrate hydrology of	ment and forest stand dy-	ment strategies on their	soil condition, water qual-	and water yield,
	forests and within forest	namics	impact on water balance	ity and water yield,	Decide on alternative
	stands		(qualitative and quantitative)	Identify indicators for soil	forest management
				and water quality degrada-	strategies for soil condi-
				tion due to forest man-	tion, water quality and
				agement	water yield enhancement

MODULE - Economic and social dimensions in mountain forestry

Elective courses	Type	SWS	ECTS
Economics of multiple use forestry	VS	1	1,5
Innovations for Sustainable Forest Management	VS	3	4
Applied development research I	VS	2	3
Applied development research II	VS	2	3
Organisational behaviour and gender issues	VU	2	3
Forest products, marketing and strategy	SE	2	3

Learning outcome Module - Economic and social dimensions in mountain forestry (specialisation):

Knowledge

Describe methods of multiple-use forestry analysis, determinants of innovations in the forest sector, identify strength and weaknesses of different kinds of decision making processes; identify marketing measures; and define paradigms, principles and standards for development research.

Comprehension

Explain economic methods for dealing with multiple-use issues; understand rationales of innovation policies and processes in the forest sectors, and marketing strategies,

Comprehend different approaches of research for development, in particular with regards to poverty reduction and food security.

Recognise societal and organizational structures which limit women's opportunities in organizational contexts.

Application

Assess options for economically optimizing multiple-use forest management; demonstrate innovations systems' functioning based on case studies; and conceptualize marketing strategies,

Organise effective group work with applications of appropriate techniques; translate relevant research ideas into concept notes

Apply standards of research for development in a research proposal.

Analysis

Analyse the interrelations of multiple forest uses and services, the role of actors and institutions in innovation processes, and forest products marketing strategies,

Identify conflicts due to poor communication and other sources of conflict,

Integrate and discuss different disciplinary and interdisciplinary approaches to research for development.

Synthesis

Integrate methodological, conceptual and problem- knowledge for analyzing multiple-use forest management, success and failure of innovation processes and for the development of forest products marketing plans.

Explain how perceptions, stereotyping and selective attention affect work effectiveness; develop a contextualized proposal for research for development,

Organise a small multi-stakeholder knowledge exchange mechanism.

Evaluation

Economically evaluate multiple-use forest management; assess innovation policies and processes; and evaluate forest products marketing strategies,

Defend and critically **assess** proposals for research for development,

Appraise communication practices and judge your abilities to organize and implement interdisciplinary knowledge exchange and learning mechanisms.

<u>Learning outcome elective courses Module – Economic and social dimensions in mountain forestry (specialisation)</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Economics of multiple use forestry	Describe interrelationships of various forest uses, Describe different ways of analyzing of multiple use forestry at business and national level	Explain methods for dealing with multiple-use issues such as trade-off-analysis and benefit-cost analysis	Assess optimization of multiple use forestry at business and policy level	Analyze multiple forest use interactions	Relate problems and knowledge to instruments regarding the economic analysis of multiple use forestry	Judge multiple forestry use according to eco- nomic analysis instru- ments
Innovations for sustainable forest management	Define innovation, List determinants for innova- tion in forestry and the forest sector	Understand innovation policies and innovation processes in forestry and the forest sector	Demonstrate innovation systems and processes in case studies of innovation projects	Analyse the roles of actors and institutions in innovation processes in forestry and the forest sector	Explain success factors and impediments to innovation in forestry and the forest sector	Assess innovation policies, processes and their outcome, Derive recommendations for actors in order to support innovation
Applied develop- ment research I	Define standards for disci- plinary development re- search that contributes to international development goals, List development research paradigms, principles and practices	Describe different disciplinary approaches to "research for development"	Apply standards for disci- plinary development re- search that contributes to international development goals to your own research proposal, Translate relevant devel- opment research ideas into concept notes	Integrate different disciplinary approaches into 'research for development', Analyse factors making for a contribution of research for development to improved livelihoods of rural poor, Debate different disciplinary and interdisciplinary research approaches in 'research for development'	Develop a research proposal in development research that contributes to international development goals, Contextualise development research ideas	Defend your research proposal, Evaluate different pro- posals in research for development'
Applied develop- ment research II	Define multi-stakeholder knowledge sharing mecha- nisms in research for devel- opment	Describe how research findings support poverty reduction and food security	Bridge disciplinary boundaries, Moderate interdisciplinary learning and knowledge exchange processes	Analyse needs for bridging disciplinary boundaries, Debate needs for interdisciplinary learning and knowledge exchange	Organise a small scientific conference as a multistakeholder knowledge sharing mechanism, Relate disciplinary research findings and insights to the national / global development discourse, Relate research with practice in management of natural resources	Evaluate one's own ability to conceptualise, organise and moderate interdisciplinary learning and knowledge exchange
Organisational behaviour and gender issues	Describe several mechanisms through which human perception leads to bias, Identify strengths and weaknesses of analytical vs. creative decision making processes	Recognize a range of societal and organizational structures which limit women's career opportuni- ties	Organise effective group work, Select appropriate techniques for reaching an agreement and visualizing the results	Identify conflict which originates from poor communication practices and distinguish it from other sources of conflict	Explain how processes such as perceptual distor- tions, stereotyping and selective attention can affect work effectiveness	Appraise communication practices and formulate recommendations for supportive communication
Forest products, marketing and strategy	Identify marketing measures	Describe and explain marketing tools	Conceptualize marketing strategies	Analyze forest products marketing strategies	Set up a forest products marketing plan	Evaluate forest prod- ucts marketing concepts

MODULE - Inventory and Monitoring

Elective courses	Туре	SWS	ECTS
Remote sensing and GIS in natural resource management	VO	2	3
3P - Sampling	VS	1,5	2

Learning outcome Module - Inventory and Monitoring (specialisation):

Knowledge

Recall basics of the process of remote sensing and spatial information systems, **Outline** 3P sampling methods and parameters for forest stocking.

Comprehension

Describe the use of remote sensing for data acquisition about the environment, **Explain** methods for forest inventory and the use of 3-P sampling.

Application

Employ GIS modelling of environmental processes and visualisation techniques, **Develop** 3 P-sample plans for forest management districts, **Construct** needle and branch mass measurement plans for individual trees.

Analysis

Appraise the use of GIS modelling of environmental processes and visualization techniques, **Analyse** data gathered during 3-P sampling.

Synthesis

Plan a GIS modelling project using forest inventory data, Integrate 3P-sampling data into forest management plans.

Evaluation

Evaluate the remote sensing data for the data acquisition about the environment, **Interpret** 3P-sampling data for forest management use and adaptation.

<u>Learning outcome elective courses Module – Inventory and Monitoring (specialisation)</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Remote sens-	Recall basics of the process	Describe the use of remote	Employ GIS modelling of	Appraise the use of GIS	Plan a GIS modelling project	Evaluate the remote
ing and GIS	of remote sensing (including	sensing for data acquisition	environmental processes	modelling of environmental	using visualization tech-	sensing data for the use
in natural	aerial photography),	about the environment	and visualisation techniques	processes and visualization	niques	of data acquisition about
resource	Describe the fundamentals		(independent of any particu-	techniques for different		the environment
management	of spatial information sys-		lar hardware or software)	environments		
	tems					
3P - Sampling	Outline 3P sampling methods.	Explain methods used in 3-P sampling.	Develop 3 P-sample plans for forest management	Analyse data gathered during 3-P sampling	Integrate 3P-sampling data into forest management	Interpret 3P-sampling data for forest manage-
	Identify parameters for	Explain inventory methods	districts,	3 3 3 7 9	plans	ment use and adaptation
	forest stocking	for forest management	Construct needle and			-
			branch mass measurement			
			plans for individual trees			

MODULE - Forest Management for goods and environmental services

Elective courses	Туре	SWS	ECTS
Protection and mitigation measures against natural hazards	VX	2	3
Risk management and vulnerability assessment	VS	2	3
Mountain hazard processes	VX	4	6
Decision support systems	VS	2	3
Multiple criteria decision making in natural resource management	VS	2	3
Fire management in mountain forest ecosystems	VS	1.5	2
Adapting forest management to climate change	VS	1,5	2
Natural resources management in mountainous areas III - Wildlife problems	VS	1,5	2

Learning outcome Module - Forest Management for goods and environmental services (specialisation):

Knowledge

Recall natural disasters, methods for risk analysis and assessment and mitigating measures for object protection,

Outline hydrologic and geomorphologic processes,

List multiple criteria planning methods (MCDM),

Recall managerial decision making and information systems and their characteristics,

Identify fire ecosystems and adaptations of flora and fauna,

Recognise controversial valuation of bird and mammal wildlife and influencing factors on wildlife abundance and survival.

Comprehension

Associate natural disasters with mitigating measures for object protection,

Explain the influence of forest and vegetation on disaster processes.

Discuss strengths and weaknesses of decision making processes and alternative MCDM-methods,

Identify Decision Support System develop tools, models and approaches

Discriminate co-evolution vs./plus anthropogenic inputs in fire-ecosystems,

Discriminate factors effecting wildlife in natural ecosystems and cultural landscapes.

Application

Apply risk analysis and assessments, assess potential impact zones and active and develop passive countermeasures for natural disaster control

Choose appropriate decision making supports and MCDM-methods in natural resource management,

Assess requirements for decision support and other executive work types and levels,

Assess the use of fire for cultivation, protection, and control,

Prepare management strategies incorporating ecological factors, anthropogenic influence and the needs of wildlife.

Analysis

Investigate countermeasures against and usability for individual natural disasters,

Compare decision making approaches and MCDM-methods in natural resource management,

Appraise management models for Decision Support Systems,

Contrast different methods to use fire for cultivation, protection, and control,

Appraise management strategies for wildfire to prevent conflicts with land use and management.

Synthesis

Design risk analysis and assessment and countermeasures against natural hazards,

Integrate MCDM-methods and decision support systems in natural resource management,

Establish expert systems applications in forest management,

Develop wildfire management strategies incorporating ecological aspects, land use and land management,

Design wildlife management strategies incorporating ecological factors, anthropogenic influence.

Evaluation

Evaluate state of the art counter measures for object protection in mountainous countries,

Compare decision support and MCDM-methods in natural resource management,

Evaluate Artificial Intelligent Decision Support Systems,

Evaluate management strategies of terrestrial ecosystems using fire as a tool for ecological land use and management.

Critical assess existing wildlife management strategies and argue on possible solutions to ongoing problems.

<u>Learning outcome elective courses Module - Forest Management for goods and environmental services (specialisation)</u>

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Protection	Recall various natural disas-	Associate natural disasters	Develop active and passive	Debate various active and	Plan countermeasures	Appraise state of the art
and mitiga-	ters,	with mitigating measures for	countermeasures to natural	passive countermeasures	against flood, torrential	counter measures for
tion meas-	Identify mitigating measures	object protection	disasters	and their usability for indi-	hazards, avalanches, and	object protection in
ures against	for object protection			vidual natural disasters	rock fall	mountainous countries
natural haz-						
ards						
Risk man-	Identify methods for risk	Contrast risk assessment	Apply risk analysis and	Distinguish vulnerability,	Design risk analysis and	Evaluate outcome of
agement and	analysis and assessment	approaches related to other	assessment to example	risk perception and evalua-	assessment for example	risk analysis and as-
vulnerability	methods applied to natural	hazards	studies	tion, tolerable risk levels,	studies	sessment of example
assessment	hazards			concepts of mitigation		studies
				measures, preparedness		
				and disaster management		
Mountain	Identify natural disasters in	Describe methods for the	Assess the potential impact	Outline rainfall-runoff proc-	Argue the importance of	Describe risk assess-
hazard proc-	alpine regions,	quantification of disaster	zones of natural mountain	ess and flood events, ero-	alpine natural hazards on	ment of certain natural
esses	Outline hydrologic and	processes,	disasters	sion, sediment transport,	landscape evolution	mountain disaster proc-
	geomorphologic processes in mountain catchments	Explain the influence of forest and vegetation on		debris flows, shallow land- slides, rock fall, and snow		esses
	III mountain caterinents	disaster processes		avalanches		
Decision	Recall the conceptual foun-	Explain the specific prob-	Assess the purpose, rele-	Outline and examine infor-	Design the conceptual	Evaluate and justify the
Support	dations of decision support	lems of developing a DSS	vance and applicability of	mation needs and require-	framework for a DSS for a	applicability of methods,
Systems	systems;	tool for a given decision	existing DSS tools for a	ments for DSS development	given decision problem;	tools and models for a
1	List relevant DSS according	problem.	given decision problem.	and application		given DSS tool.
	to taxonomy.					S
Multiple	List multiple criteria plan-	Discuss strengths and	Choose appropriate MCDM-	Compare MCDM-methods	Formulate MCDM-methods	Appraise MCDM-
criteria deci-	ning methods (MCDM)	weaknesses of alternative	methods in natural resource	in natural resource man-	in natural resource man-	methods in natural
sion making	, , ,	MCDM-methods	management	agement for training exam-	agement for training exam-	resource management
in natural				ples	ples	for given situations
resource						_
management						
Fire man-	Describe the dimension of	Differentiate wild land fire	Assess the use of fire for	Contrast different methods	Develop wildfire manage-	Appraise knowledge
agement in	forest fires worldwide and in	types and fires at the urban-	cultivation, protection, and	to use fire for cultivation,	ment strategies for a particu-	gaps in fire ecology and
mountain	mountain regions,	wild land interface,	control in Central Europe,	protection, and control,	lar area incorporating eco-	fire behaviour,
forest eco-	Identify fire ecosystems and	Discriminate co-evolution	Eurasia, Australia, North	Analyse the influence of fire	logical aspects, land use	Evaluate management
system	the adaptations of flora and	vs./plus anthropogenic	America and Africa,	comparing clear-cutting and	and land management	strategies of terrestrial
	fauna to periodic fires	inputs in fire-ecosystems,	Assess land use and land	wind throws,		ecosystems using fire as
		Distinguish fire behaviour,	management strategies	Appraise management		a tool according to
		fighting, and management	according to their conflict	strategies for wildfire to		ecological, land use and
			potentials with wild fires	prevent conflicts with land		management aspects
				use and management		

Adapting	Recognise adaptive meas-	Discuss approaches of	Apply adaptive manage-	Examine management	Develop adaptive manage-	Evaluate different alter-
Forest Man-	ures in forest management	adaptive management	ment processes and dem-	strategies regarding to	ment strategies for multiple	native adaptive options,
agement to			onstrate for case study	vulnerability of ecosystem	service situations	propose action and
Climate			examples the design of	services and analyse poten-		justify your choice
Change			adaptation strategies	tial adaptive measures		
Natural re-	Recognise controversial	Discriminate factors effect-	Relate needs of wildlife to	Determine management	Design management strate-	Critical assess existing
sources	valuation of bird and mam-	ing wildlife in natural ecosys-	ecological factors and hu-	strategies incorporating the	gies incorporating the eco-	wildlife management
management	mal wildlife in mountain	tems but also cultural land-	man attitudes and accep-	ecological factors, anthropo-	logical factors, anthropo-	strategies and argue on
in mountain-	regions,	scapes with developmental	tance levels	genic influence and the	genic influence and the	possible solutions to
ous areas III -	Identify influencing factors	intentions		needs of wildlife	needs of wildlife	ongoing problems
Wildlife prob-	on wildlife abundance and					
lems	survival					

MODULE - Forest Engineering

Elective courses	Туре	SWS	ECTS
Technology assessment	VS	2	3
CAD - Computer aided design	VU	1	1
Timber harvesting	EX	1	1

Learning outcome Module - Forest Engineering (specialisation):

Knowledge

Describe methods and terms of technology assessment, **Recall** harvesting machines used for forest timber harvesting, **Describe** basic CAD practices for engineering design and drawing.

Comprehension

Illustrate multi-criteria decision-making processes and life cycle analysis, **Describe** relations between silvicultural and harvesting systems, **Illustrate** examples of forest engineering designs.

Application

Employ technologies with regard to methods of technology assessment **Create** 2D sketches and parts using CAD software.

Analysis

Analyse impacts of new technologies on a economical, ecological and social scale, **Analyze** and determine analogue and digital drawings.

Synthesis

Develop technology assessment and environmental impact assessment projects, **Identify** harvesting technologies for use in mountain areas, **Devise** drawings to foster forest management activities.

Evaluation

Evaluate harvesting technologies according to technology assessment methods, **Conclude** possible adaptations of harvesting technologies to silvicultural systems in mountain areas, **Assess** the quality and accuracy of analogue and digital drawings for further processing.

Learning outcome elective courses Module - Forest Engineering

courses	Knowledge	Comprehension	Application	Analysis	Synthesis	Evaluation
Technology assessment	Definition of the term technology assessment, Describe methods of Technology Assessment	Illustrate Multi-criteria decision-making processes, Explain Life Cycle Analysis	Employ project, technology and problem in a TA study, Discover and apply new technologies with regard to methods of technology assessment	Analyse impacts of the introduction of new technologies on a economical, ecological and social scale	Develop and present a technology assessment project, Design Environmental Impact assessments	Evaluate new technologies with regard to methods of technology assessment
Timber har- vesting	Recall harvesting machines used for forest timber harvesting	Describe the relations between silvicultural sys- tems and harvesting	Show how harvesting machines are used in various silvicultural systems	Appraise the use of harvesting machines in mountain areas	Design the use of harvest- ing technologies for different silvicultural systems used in mountain areas	Evaluate used harvest- ing technologies, Conclude on possible adaptations of harvest- ing technologies to different silvicultural systems used in moun- tain areas
CAD - Computer aided design	Describe the design process and basic CAD practices for engineering design and drawing	Solve examples of forest engineering designs	Create 2D sketches and parts using CAD software	Analyze and determine analogue and digital drawings	Devise drawings to foster forest management activities	Assess the quality and accuracy of analogue and digital drawings for further processing

§ 6 FREE ELECTIVES

Free electives worth a total of 10 ECTS credits are required to complete the master's programme. Free electives may be selected from all courses offered by all recognized universities in Austria and abroad. Free electives are intended to impart knowledge and skills in the student's own academic subject as well as in fields of general interest.

§ 7 MASTER'S THESIS

A master's thesis is a paper on a scientific topic, to be written as part of a master's degree programme (for exceptions please see the By Laws (Satzung) of the University of Natural Resources and Life Sciences, Vienna, part III- Teaching, § 30[9]). The thesis is worth a total of 30 ECTS credits. With their master's theses, students demonstrate their ability to independently address a scientific topic, both thematically and methodologically (§ 51 [8] UG 2002 BGBI. I no. 81/2009).

The topic of a master's thesis shall be chosen in such a way that it is reasonable to expect a student to be able to complete it within six months. Multiple students may jointly address a topic, provided that the performance of individual students can be assessed (§ 81 [2] UG 2002 BGBI. I no. 81/2009).

The master's thesis shall be written in English. Languages other than English are permissible only if approved and confirmed by the thesis supervisor. The thesis defensio must be held in English.

§ 8 Completion of the Master's Programme

The Master's Programme in Mountain Forestry has been completed when the student has passed all required courses and received a positive grade on the master's thesis and defensio.

§ 9 ACADEMIC DEGREE

Graduates of the Master's Programme in Mountain Forestry are awarded the academic title Master of Science, abbreviated as MSc or M.Sc. The academic title MSc (M.Sc.), if used, shall follow the bearer's name (§ 88 [2] UG 2002 BGBI. I no. 81/2009).

§ 10 EXAMINATION REGULATIONS

- (1) The Master's Programme in Mountain Forestry has been completed successfully when the following requirements (corresponds to components in [7] below) have been met:
 - positive completion of the compulsory courses worth a total of 58 ECTS credits (§ 4),
 - positive completion of elective courses worth a total of 20 ECTS credits (§ 5),
 - positive completion of free electives worth a total of 10 ECTS credits (§ 6),
 - positive completion of of the master seminar (§ 4) of 2 ECTS credits,
 - a positive grade on the master's thesis and the defensio.
- (2) Student evaluation takes the form of course and module examinations. Course examinations can be either written or oral, as determined by the course instructor, taking the ECTS credit value of the course into account. Any prerequisites for admission to examinations shall be listed in § 4 under the respective course/module.
- (3) The choice of examination method shall be based on the type of course: Courses shall conclude with a written or oral examination, if continuous assessment of student performance is not applied. Seminars (SE) and project-based courses (PJ) can be evaluated based on independently written papers, length and contents of which are determined by the course instructor. For all other course types, the examination type is at the instructor's discretion.

(5) The topic of the master's thesis shall be selected from one of the subjects of the master's programme.

(6) After the successful completion of all the courses and examinations required in the Master's Programme, the completed master's thesis, after it has been given a positive evaluation by the thesis supervisor, shall be publically presented by the student and defended in the form of an academic discussion (defensio). The committee shall consist of a committee chair and two additional university teachers with a venia docendi or equivalent qualification. The student's total performance (thesis and defensio) will be assigned a comprehensive grade. Both thesis and defensio must receive a passing grade for the student to complete the programme. The written evaluations stating the rationale for the thesis grade and the defensio grade are included in calculating the comprehensive grade and are documented separately.

The comprehensive grade is calculated as follows:

Master's thesis: 70%

Defensio (incl. presentation): 30%

(7) A comprehensive evaluation of the student's performance on the entire programme shall be assigned. A comprehensive evaluation of "passed" means that each individual component of the programme was completed successfully. If individual components of the programme have not been successfully completed, the comprehensive evaluation is "failed". A comprehensive evaluation of "passed with honours" is granted if the student has received no grade worse than a 2 (good) on all individual components, and if at least 50% of the individual components were graded with 1 (excellent).

§ 11 TRANSITIONAL PROVISIONS

For students continuing their studies under the provisions of the previously valid curriculum, the list of equivalent courses (Äquivalenzliste) pursuant to a resolution of the Academic Programme Committee (Studienkommission) applies. This list includes all courses that correspond to courses offered in the previously valid curriculum.

For students who switch to the new master's programme curriculum, examinations for courses taken under the provisions of the previously valid curriculum shall be recognized towards the new programme under the provisions of this curriculum based on the list of equivalent courses.

§ 12 EFFECTIVE DATE

This curriculum shall take effect on 1.10.2017.

ANNEX A TYPES OF COURSES

The following types of courses are available:

(Please only offer course types included in this list from now on.)

Lecture (VO)

Lectures are courses in which certain areas of a subject and the methods used in this area are imparted through didactic presentation.

Exercise course (UE)

Exercise courses are courses in which students are instructed in specific practical skills, based on theoretical knowledge.

Practical course (PR)

Practical courses are classes in which students deal with specific topics independently, based on previously acquired theoretical and practical knowledge.

Compulsory internship seminar (PP)

The compulsory internship seminar is a class in which students deal independently with topics related to their internship placements, based on previously acquired theoretical and practical knowledge.

Seminar (SE)

Seminars are courses in which students are required to work independently on the respective subject, deepen their knowledge of the topic and discuss relevant issues.

Field trips (EX)

Field trips are courses in which students have the opportunity to experience relevant fields of study in real-life practical application, to deepen their knowledge of the respective subject. Field trips can be taken to destinations both in Austria and abroad.

Master thesis seminar (MA)

Master thesis seminars are seminars intended to provide students with academic support during the thesis writing process.

Mixed-type courses:

Mixed-type courses combine the characteristics of the courses named above (with the exception of project-type courses). Integration of different course-type elements improved the didactic value of these courses.

Lecture and seminar (VS)

Lecture and exercise (VU)

Lecture and field trip (VX)

Project course (PJ)

Project courses are characterized by problem-based learning. Under instruction, students work - preferably in small groups - on case studies, applying appropriate scientific methods.

Seminar and field trip (SX)

Exercise and seminar (US)

Exercise and field trip (UX)