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Abstract 

The heterogeneity of farms and the problem of self-selection are challenging the 

evaluation of treatments in agriculture. This is particularly the case for rural 

development measures whit voluntary participation and heterogeneous outcomes. 

But knowledge about the selection mechanisms for a certain treatment, in 

combination with econometric methods, can help to overcome these problems. One 

of these promising methods is the Propensity Score Matching (PSM) approach. In 

this paper we apply PSM in order to obtain treatment effects from the agricultural 

investment support programme in Austria on the farm income. We also test the 

robustness of the results to hidden bias with sensitivity analysis. Furthermore we 

split the sample in more homogenous subsamples in order to increase the 

robustness of the results. The results show that treatment effects differ by a large 

amount for the subsamples and that splitting leads to slightly more robust results.  

Key words: Rural Development programmes, heterogeneity, causal effects, 

Propensity-Score Matching, sensitivity analysis 
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1 Introduction 

There are about 187,000 farms located in Austria for the year 2007 (BMLFUW, 2011). Even 

though there have been structural changes and adaptations in the last few decades, the 

farms differ in farm structure and production 

systems. Figure 1 illustrates this 

heterogeneity by plotting the livestock and 

utilised agricultural area of around 1,600 

farms. The heterogeneity is mainly due to 

the fact of different site conditions, i.e. 

mountainous or non-mountainous regions, 

as well as being the result of farm-manager 

characteristics or strategies. Furthermore, 

analyses in agriculture have to take into 

account that a farm is always built upon a 

unique relationship between the farm 

household and the farm enterprise. The 

heterogeneity of farm units and the unique relationship between farm and farm households 

leads to heterogeneous responses to support programmes (Pufahl and Weiss, 2009). This 

results in methodological challenges for researchers in carrying out quantitative analyses in 

the framework of Rural Development evaluation. 

Quantitative evaluation asks for the causal effect. Therefore the Neyman-Rubin-Holland 

model, also known as the counterfactual model (Morgan and Winship, 2009), the Neyman-

Rubin model (Sekhon, 2009) or Roy-Rubin model (Caliendo and Hujer, 2006) has been 

developed. The model was originally introduced by Neyman (1923) and is nowadays used in 

a wide range of topics for microeconomic evaluation (Sekhon, 2009). Under this model the 

causal effect (∆A) for one individual (A) is computed by comparing the outcome in the state of 

participation (YA
1) and the outcome in the state without participation (YA

0). This can be 

formulated as ∆A = YA
1
 – YA

0
. But a fundamental challenge arises, as one of these outcomes is 

counterfactual because one unit can either be participant or non-participant. When we look 

for counterfactual for treated units, one solution to this problem is the use of observable non-

participants. The treatment effect can then be computed by simply comparing treated and 

non-treated units. But to follow causal claims, treatment must be independent of the potential 

outcome and treated and non-treated must be homogenous, only differing by the analysed 

variable. If these are not fulfilled, the results are biased and/or have high variability. This is 

not a major issue in randomised experiments, as randomisation of treatment insures the 

independence of treatment and outcome. To reduce variability, the pairing of treated and 

Figure 1: Livestock and utilised agricultural area for 
a sample of 1,600 Austrians farms. 



untreated units can be used and number of observations can be increased (Rosenbaum, 

2005a).  

As experiments can hardly been used in agricultural treatment evaluation, we have to rely on 

observational data (Henning und Michalek, 2008). Observational studies differ from 

experiments, as the researcher cannot control the assignment of treatment to individuals 

(Rosenbaum, 2010, 65). Therefore, participants select themselves voluntarily for a certain 

treatment, which leads to a selection bias in the results. This bias is mainly due to variables 

(X) disturbing the causal inference of the treatment (T) on the outcome (Y) and therefore 

violates the independence assumption. Figure 2 illustrates a causal relationship between the 

treatment T and the outcome Y, but Y is biased through the mutual dependence of T and Y 

on X.  

 

 

As in heterogeneous observational studies, the increase in observations cannot reduce 

variability; more homogenous samples are needed (Rosenbaum, 2005a). Therefore the 

pairing of treated and untreated is needed to reduce both, bias and variability. One approach 

of pairing is Propensity Score Matching where treated and untreated are paired on similar 

propensity scores. Rubin and Rosenbaum (1983) prove that matching on the propensity 

score is sufficient. As with Matching, we only check for observable covariates; there always 

might be hidden bias caused by unmeasured variables.  

The basic objective of this paper is to apply a Propensity Score Matching approach to 

analyse their ability to scope with heterogeneity in agricultural studies. This is exemplified on 

the agricultural investment support programme in Austria and its effects on the farm income 

of farms using the time period 2005-09. Therefore further analysis is implemented to reduce, 

on the one hand, the bias from unobservables and, on the other, to measure the robustness 

of the results regarding hidden biases. Furthermore we stratify the sample in dairy and 

granivore farms in order to obtain more homogenous samples and reduce variability as well 

as increase the robustness of the result. The following specific questions are asked:  

- Can Propensity Score Matching  be a supportive tool to derive causal effects from a 

farm investment support programme in empirical studies?  

- How does Propensity Score Matching  cope with heterogeneity in agriculture? 

- Can bias be reduced by using smaller, more homogenous samples? 

Figure 2: A causal diagram in which the effect of T on Y is disturbed through the back-door path, 
a mutual dependence on Z. (Source: Morgan and Winship, 2009) 
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In Section 2 we give a brief introduction in farm investment and in the farm-investment 

support programme of Austria. Section 3 explains the methodological procedure and the 

database used in this paper. The results of this three-step approach are then displayed in 

Section 4. This section also includes the application of sensitivity analysis in order to judge 

on the causality of the different results. The results are discussed in Section 5. 

2 Farm investment and the farm-investment support programme in Austria 

The farm-investment programme is part of the second pillar of the Common Agriculture 

Policy and basically concerns improving competitiveness, work conditions, animal welfare 

and environmental conditions. To achieve these goals, 576 million Euros have been spent in 

Austria in the period from 2000 to 2009 (Dantler et al., 2010). The number of fostered farms 

during this period is slightly above 37,000, all mainly located in mountainous regions (see 

Figure 3). Consequently, forage farms (including mainly dairy and suckler-cow farms) are the 

main beneficiary of farm-investment payments, with a share of more than 56%. In contrast, in 

the distribution of farm type of all farms in Austria, forage farms have only a share of 37% 

(BMLFUW, 2011). In addition, there is an over-representation of granivore farms in contrast 

to field-crop farms. It is therefore not surprising that more than 50% of these funds foster the 

construction of barns mainly for dairy farming. Even though participants are mainly 

mountainous farms, it illustrates a low share of participants in the western federal states of 

Tyrol and Vorarlberg. This might be due to specific achievements by the federal states. 

Furthermore, on average the share of participating farms increases for bigger farms. Hence 

the means of participants and non-participants differ, especially for the utilised agricultural 

area (UAA), total livestock units (LU) and milk quota (Dantler et al., 2010). As farm-

investment support payments can only be obtained with an investment, and there is hardly 

any farm investment without support, we have to consider them jointly when evaluation is 

carried out (see Dirksmeyer et al., 2006 and Dantler et al., 2010). Therefore we also have to 

consider investment decisions in our analysis. A study done for German farms also points 

out that investing farmers have a lower share of equity and are older than non-investing 

farmers (Läpple, 2007). It is evident, therefore, that there has been a selection for 

participation based on structural and regional variables such as region, farm type, farm size 

and financial variables.  

3 Methodological Approach  

For the application of matching we use a three-step approach, where we first define the 

matching covariates and estimate the propensity score for the whole sample as well as for 



the subsamples of dairy, cash crop and granivore farms. Secondly, we match treated and 

controls based on the propensity score using a suitable Greedy algorithm with calliper 

Matching. As a last step, we calculate the average treatment effect on the treated with a 

difference-in-difference estimator for all samples. Afterwards sensitivity analysis is applied to 

judge on the quality of Matching.  

3.1 The Propensity Score Matching  approach 

Matching follows the Conditional Independence Assumption (CIA) in order to find an 

adequate control group. Based on the work of Rubin (1977) and Rubin and Rosenbaum 

(1983), the CIA assumes that under a given vector of observable covariates (Z), the outcome 

(Y) of one individual is independent of treatment: {Y0, Y1 ⫫ T} |Z, where ⫫ denotes 

independence. The matching procedure is based on conditioning on all covariates 

influencing T and/or Y (Z1, Z2, Z3,….Zk). This conditioning on Z should, on the one hand, lead 

to a reduction in selection bias in the form of a reduced correlation (r) between the errorterm 

of the treatment T (u) and the errorterm of the outcome Y (e) (see Figure 3).  

 

 

Figure 3: Identification of causal effects through conditioning on observed variables. (Source: Gangl, 
2006) 

Thus, through matching the income of farms are independent of whether the farm 

participated in the farm-investment programme or not. However, this requires the 

identification of all those covariates which influence the outcome and the probability of 

participation but are not influenced by programme participation. The selection of covariates is 

the most important task in the matching procedure. Guidance can be gained from statistical, 

economical and also practical background in order to choose the appropriate covariates. The 

influence of the participation on the covariates can be avoided by matching on farm variables 

before the start of treatment.  

Another major assumption which needs to be fulfilled is the so-called Common Support 

Assumption. This basically requires the existence of non-participants having similar Z to all 

participants. Violation arises especially when covariates are used which predict too well the 

probability of treatment, but this is simply detected by visual control (Lechner, 2001). Losing 



observations because of missing common support is not usually a problem when these are 

not too numerous but might change the quantity of the results. 

In order to identify similar controls, PSM use the propensity score (p(Z)) of each individual 

instead of each single covariate. The propensity score is defined as the probability of 

participation (Pr(T=1)) for one individual given the observed covariates Z, independent of 

observed participation: p(Z) = Pr( Ti=1│Z1, Z2, Z3,….Zk). Rubin and Rosenbaum (1983) prove 

that matching on the propensity score is sufficient. Propensity-Score Matching (PSM) 

differentiates from exact matching as the values of covariates are usually different within the 

pairs with the same propensity score but are balanced in the treated and control group 

(Rosenbaum, 2010, 166). The estimation of the propensity score (PS) is commonly based on 

the fitted values of a binary logit or probit model, using observed treatment assignment 

(yes/no) as the explained and Z as the explanatory variable. The model must not be linear 

but may include interactions, polynomials and transformations of the covariates.  

There are several algorithms available to pair controls and treated units. In our paper we use 

a Greedy algorithm with calliper pair matching without replacement approach. Similarity is 

therefore established by using a self-defined calliper. A non-participant which is found within 

the calliper serves as control for one treated and cannot be used as another control. The 

treated unit is dropped when there is no control available within the calliper. Through this the 

quality of matching rises, as the controls are much more similar in contrast to simple Nearest 

Neighbour Matching (Caliendo and Kopeinig, 2008) and the condition of common support 

can be fulfilled. Augurzky und Kluve (2004) argue that callipers which are not too narrow are 

preferable when the heterogeneous effects of treatment are expected (Augurzky und Kluve, 

2004). Therefore we set the calliper to 0.2 for our application. 

Through the two steps, the estimation of the propensity score and the actual matching using 

a radius algorithm, pairs consisting of participants and controls are built, and a control group 

which is similar to the participant group is generated. This results in a reduction of systematic 

mean differences between these groups. Furthermore, matching on π(Z) does not touch the 

Y variable until the estimation of the treatment effects in order to prevent it from new biases 

(Ho et al., 2007). Thus, the average treatment effect on the treated (ATT) can be computed, 

as the difference of the mean outcome of participants (YA
1) and controls (YB

0):  

         n                n           

ATT=∑(YA
1
│p(Z))/ni – ∑(YB

0
│p(Z))/nj     (1) 

                     A=1                               B=1        

Matching can then be considered successful when the mean of the covariates between 

treated and control group is balanced. Balance is judged by conventional testing; 

alternatively, Ho et al. (2007) recommend using QQ-plots which plot the quantiles of a 

variable of the treatment group against that of the control group in a square plot (Ho et al., 



2007). The matching algorithm in our analysis is run with the R-package “Matching” by J.S. 

Sekhon (see Sekhon, 2011). 

As the independent assumption in matching is built on observable covariates, it is often 

criticised that there might still be hidden bias in the outcome, coming from unobserved 

variables. Therefore we implement a difference-in-difference (DiD) followed by sensitivity 

analysis considering the amount of hidden bias in the result. 

3.2 Estimation of treatment effects 

Smith and Todd (2005) recommend for controlling for unobservable covariates the 

implementation of a DiD estimator. The DiD relies on the assumption that the differences of 

participants and non-participants are similar at every time. It is computed as the difference of 

the progress of the participant and the non-participant from one point before (t’) to one point 

after (t) the time of treatment (tT) (Heckmann et al., 1998). By implementing the factor time 

and the before- and after-estimation in the analyses, we can monitor for unobservable, linear 

and time-invariant effects such as price fluctuations (Gensler et al., 2005). The combination 

of matching and DiD results in the Conditional difference-in-difference (CDiD) estimation and 

the used formula can be written as     

            n                              n         

ATT
 
= ∑(YA,t – YA,t´)│p(Z)/nA – ∑( YB,t – YB,t´)│p(Z)/nB    t´ < tT < t  (2) 

          i=1                            j=1         

For our analysis, the pre-treatment situation is in 2003, post-treatment is 2010 and the 

treatment itself took place between 2005 and 2009. The two-year gap before treatment is 

necessary, since the year of treatment is the year of payment and the investment usually 

happens a year or two before payment. 

3.3 Sensitivity analysis 

In order to investigate the reliability of the results we implement a sensitivity analysis in our 

model. Therefore we use the so called Rosenbaum bounds (see Rosenbaum 2002, 2005b 

and 2010). Basically this sensitivity analysis tests for the robustness of results and models. 

Rosenbaum’s approach in particular focuses on the hidden biases from unobservable 

variables and therefore on the violation of the assumption of independence of treatment and 

outcome or random assignment of treatment after matching. There is hidden bias, when 

pairs look comparable in their observable characteristics but differ in their actual probability 

(π) of receiving the treatment.  

To measure the departure from random assignment of treatment the parameter Γ is 

implemented in the odds ratio of the pairs. There is no departure if the odds (π/1-π) of each 

unit do not differ within the pair and the Γ=1. When the units k and j have the same 

probability, the odds ratio was at most: 



 

 
 

         

         
       (3) 

The parameter of one is given in randomised experiment, but in observational studies this 

hardly ever appears. If the parameter happens to be 2, this indicates that one of these units 

is twice as likely to receive the treatment as the other.  

It is not possible to compute the parameter; therefore we assume a perfect situation, with a 

positive treatment and no hidden bias, but we are ignorant of these facts, and perform a 

sensitivity analysis (Rosenbaum, 2010, 259). In order to start, one selects a series of values 

for Γ. Then we can either judge the robustness on the p-values and see how the p-value 

changes for increasing values of Γ or how the magnitude of the treatment effects changes 

with an higher Γ. High sensitivity to hidden bias appears if the conclusions change for values 

of Γ just slightly higher than one and low sensitivity is given if the conclusions change at large 

values of Γ (Rosenbaum, 2005b). The sensitivity analysis in our paper is based on the 

Wilcoxon sign rank test and the Hodges-Lehmann (HL) point estimate for the sign rank test 

with an upper and lower bound.2 The values and estimates of these tests might differ to our 

results as they deal differently with outliners. We use the R-package “rbounds” by L. Keele 

(see Keele, 2010). 

3.4 Data 

We use data from 2000 to 2010 of 1,636 voluntary bookkeeping farms in Austria, where we 

find 239 farms who only participated in the farm-investment support programme at least once 

between 2005 and 2009 and 845 farms who did not participate between 2000 and 2010. 

Farms which did not attend in the years 2000-2004 and 2010, as well as those which 

received less than 5000 Euros in payments, were dropped from the analysis. Participants 

and non-participants are matched with data based on the year 2003.  

In observational studies, better results can be achieved, when samples are more 

homogenous (Rosenbaum, 2005a). In order to gain more homogenous samples we split the 

sample in three subsamples, for dairy and granivore farms. Whereas dairy farms are 

characterised as farms keeping dairy cows and granivore farms are farms whose sales are 

mainly due to fattening pigs and steers as well as breeding and fattening hens. We then 

apply the three-step approach for all three subsamples individually. 

4 Empirical Results 

The results for the three-step estimation of the average treatment effect on the treated 

applied in the case of farm-investment support in Austria are displayed in this chapter. 

Furthermore we show the results of sensitivity analysis and stratification. 

                                                
2
 A detailed derivation is given in Peel and Makepeace (2009). 



4.1 Estimation of the Propensity Score  

In order to get the propensity scores of each unit we apply a binary logit model. In our model 

we include a multinomial variable for the farm type and whether the farm is located in the 

region west, south and north, a dummy variable for organic farming and metric variables for 

the age of the farm manager, the labour, the utilised agricultural area (UAA), the share of 

rented UAA, the livestock density, the share of equity and the non-farm income. The 

estimates for the coefficients are displayed in Table 1. The results indicate that dairy farms, 

farms with higher labour and livestock density, as well as more UAA and non-farm income, 

are more likely to invest and receive farm-investment support but cash-crop farms and farms 

with older managers are less likely. The model correctly predicts about 78% of the farms 

attending the programme and is statistically significant at the 0.1% level or better, as 

measured by the likelihood ratio test.  

Table 1: Covariates estimates of logit-models explaining programme participation for the whole 
sample. 

  Estimate Std. Error z value   

Intercept -5.928 1.075 -5.514 
***

 

Dummy permanent crop farms 0.708 0.458 1.546 

 Dummy forage farms (exclusive dairy) -0.030 0.485 -0.061 

 Dummy cash-crop farms -0.639 0.334 -1.911 . 

Dummy dairy farms 0.453 0.237 1.910 . 

Dummy granivore farms 0.403 0.314 1.284 

 Dummy region south -0.130 0.207 -0.628 

 Dummy region west -0.319 0.291 -1.096 

 Dummy konv farming -0.080 0.215 -0.373 

 Age -0.022 0.009 -2.453 
*
 

Labour 0.565 0.126 4.487 
***

 

Utilised agricultural area (log) 0.713 0.153 4.644 
***

 

Share of rented land 0.587 0.372 1.579 

 Livestock density 0.586 0.179 3.270 
**
 

Share of equity 0.801 0.508 1.577 

 Non-farm income (log) 0.140 0.039 3.548 
***

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Using this model we estimate the bounded propensity score for each farm, which is the basis 

for the following matching step. The distribution of the propensity scores is quite similar in the 

treated and the control group (see Figure 4). This is necessary in order to find good matches. 



 

Figure 4: Distribution of propensity scores for treated (left) and controls (right). 

4.2 Results from Matching and treatment effect estimation 

The quality of the matching algorithm is based on the achieved balance between treated and 

control group. The applied Greedy algorithm has the best results regarding the matching 

balance in comparison to other algorithms. Out of 239 potential participants, the matching 

procedure develops a new sample with 227 pairs consisting of one treated and one control. 

Through this, the sample increased its balance between the two groups (participants and 

controls) for all variables, which are not statistically significantly different, using conventional 

levels and the t-test, anymore (see Table 2).  

Table 2: Mean values of variables for participants and controls before and after Propensity-Score 
Matching for the whole sample. 

  

Potential 
participants 

Potential 
controls  

Selected 
participants 

Selected 
controls   

Number of farms 239 810 
 

227 227  

Dummy permanent crop farms 0.050 0.059 
 

0.048 0.048  

Dummy forage farms (exclusive dairy) 0.029 0.033 
 

0.031 0.035  

Dummy cash-crop farms 0.130 0.279 
*** 

0.137 0.159  

Dummy dairy farms 0.452 0.307 
*** 

0.454 0.441 
 

Dummy granivore farms 0.163 0.095 
** 

0.145 0.163  

Dummy region south 0.247 0.247 
 

0.233 0.225  

Dummy region west 0.100 0.088 
 

0.101 0.093  

Dummy konv farming 0.816 0.819 
 

0.815 0.837  

Age 52.280 54.207 
** 

52.595 51.907 
 

Labour 1.824 1.487 
*** 

1.777 1.814  

Utilised agricultural area (log) 3.488 3.309 
*** 

3.465 3.484  

Share of rented land 0.287 0.242 
** 

0.280 0.294  

Livestock density 1.125 1.125 
*** 

1.106 1.106  

Share of equity 0.905 0.905 
 

0.911 0.903  

Non-farm income (log) 7.466 7.375 
 

7.409 7.265  

Livestock (log) 3.038 2.344 
*** 

3.003 2.976 
  

Dairy cows (log) 1.549 1.094 
*** 

1.559 1.535   

Pigs (log) 1.837 1.363 
** 

1.769 1.860   

t-test for equally of means: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

With the new sample of 227 pairs gained from matching approach the ATT is computed by 

comparing the mean development of the farm income from 2003 to 2010 of participants and 



controls. This results in an ATT for the farm income of 7197 Euros, which can be interpreted 

as the amount of farm income which treated farms could increase more than controls. The 

ATT has a standard error of 2656.4 and t-statistic of 2.71, which indicates a statistical 

significant difference between the means at the 1% level or better.  

4.3 Sensitivity analysis 

Even though the ATT for the farm income is positive, we cannot be sure that controlling for 

observable covariates is enough to draw causal conclusions. Therefore we apply sensitivity 

analysis to test the robustness of the result. The results of this analysis are displayed in 

Table 3. The first column of Table 3 is the value of the parameter Γ, which should indicate the 

difference in the odds of farm participating or not caused by an unobserved variable. In the 

second and third column the upper and lower bound of the p-value from Wilcoxon Sign 

ranking test and the fourth and fifth the upper and lower bound of the Hodges-Lehmann point 

estimates for the sign rank test is shown. In the first row the parameter is set to one, 

assuming total randomisation through matching. The sensitivity analysis shows that through 

the increase of Γ up to 1.08, the upper bound of the p-value exceeds the 5%-level. This 

indicates that the result is highly vulnerable to unobserved bias. This also leads to a widening 

of the HL treatment estimates and therefore increasing the uncertainty through selection 

bias. When the parameter increases to 1.38, the HL treatment effect is even shown to 

become negative. 

  



Table 3: Rosenbaum bounds parameters for the results of the whole 
sample 

parameter (Γ)
1
 

Wilcoxon p-value HL treatment estimate 

Lower bound
2
 Upper bound

3
 Lower bound

4
 Upper bound

5
 

1.00 0.021 0.021 4265 4265 

1.02 0.015 0.029 4012 4520 

1.04 0.011 0.038 3752 4788 

1.06 0.008 0.049 3466 5046 

1.08 0.006 0.063 3230 5266 

1.10 0.004 0.079 2938 5521 

1.12 0.003 0.098 2682 5807 

1.14 0.002 0.119 2449 6036 

1.16 0.001 0.143 2213 6255 

1.18 0.001 0.169 1995 6468 

1.20 0.001 0.198 1752 6712 

1.22 0.000 0.229 1519 6911 

1.24 0.000 0.262 1302 7134 

1.26 0.000 0.297 1060 7340 

1.28 0.000 0.333 864 7609 

1.30 0.000 0.370 659 7840 

1.32 0.000 0.408 458 8052 

1.34 0.000 0.446 253 8285 

1.36 0.000 0.484 64 8481 

1.38 0.000 0.522 -95 8678 

1.40 0.000 0.558 -260 8903 

1
 Odds of differential assignment due to unobserved factors 

2
 Lower bound significance level (on assumption of under-estimation of treatment effect). 

3
 Upper bound significance level (on assumption of over-estimation of treatment effect). 

4
 Lower bound point estimate (on assumption of under-estimation of treatment effect). 

5
 Upper bound point estimate (on assumption of over-estimation of treatment effect). 

 

4.4 Results for stratified subsamples 

The subsamples consist of 108 participants and 249 non-participants in the dairy 

subsamples and 39 treated and 77 non-treated in the granivore subsample. An individual 

logit model is applied for each subsample. The models are adapted by farm type-specific 

covariates. The estimates and significance levels of the model can be seen in Table 4. Thus, 

we included the share of dairy cows in the dairy subsample and the number of pigs variable 

in the granivore subsample. The estimation shows that in both models these additional 

covariates are not statistically significant but we are convinced that they play a major role in 

the decision to participate in the investment support programme (see also Dantler et al., 

2010). Furthermore the estimates in both models are similar to the model with the whole 

sample except for the fact that labour and age are not statistically significant anymore. The 

models correctly predict about 70% and 76% respectively of the farms attending the 

programme and both are statistically significant at the 0.1% level or better, as measured by 

the likelihood ratio test. 



Table 4: Covariates estimates of logit-models explaining programme participation for the subsample of 
dairy and granivor farms 

  
Dairy subsample Granivore subsample 

  Estimate Std. Error z value 
  

Estimate Std. Error z value 
  

Intercept -8.771 2.075 -4.227 *** -16.175 4.467 -3.621 *** 

Dummy region south -0.258 0.323 -0.798   1.202 0.671 1.792 . 

Dummy region west 0.141 0.338 0.417   -11.777 1455.398 -0.008   

Dummy konv farming -0.033 0.311 -0.105   0.929 1.315 0.707   

Age -0.010 0.014 -0.708   -0.035 0.030 -1.191   

Labour 0.329 0.272 1.209   0.713 0.579 1.233   

Utilised agricultural area (log) 1.144 0.320 3.576 *** 2.574 0.745 3.454 ** 

Share of rented land 0.693 0.549 1.264   -1.246 1.377 -0.905   

Livestock density 0.802 0.360 2.230 * 0.689 0.396 1.738 . 

Share of equity 1.433 0.814 1.760 . 3.810 1.876 2.031 * 

Non-farm income (log) 0.250 0.066 3.766 *** 0.246 0.130 1.894 . 

Share of dairy cows -0.067 0.855 -0.078   

    Number of pigs         0.067 0.320 0.209   
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The distribution of the bounded propensity scores is quite similar for treated and controls in 

the dairy subsample but is more distinctive in the granivore subsample (see Figure 6 and 7). 

This results in a more challenging matching procedure for the granivore subsample in order 

to fulfill the common-support assumption. The Greedy matching algorithm finds 104 pairs for 

the dairy and 27 pairs for the granivore, which increases the balance of the subsamples for 

each selected covariate (see Table 5 and 6). Balance of covariates is checked by the t-test, 

which shows no statistical significant difference on the conventional levels. 

 

 

Figure 5: Distribution of propensity scores for treated (left) and controls (right) in the dairy subsample 

 



 

Figure 6: Distribution of propensity scores for treated (left) and controls (right) in the granivore 
subsample 

    Using the matched subsamples we can estimate the ATT in the farm income for dairy as 

well for granivore farms similar to the procedure when the whole sample is used. The farm 

income of treated dairy farms increases in average in the analysed period by about 1,200 

Euros more than the control. The t-statistic is very low and therefore the result is not 

statistically significant. In contrast, the average development of farm income of treated 

granivore farms is 18,600 Euros higher and statistically significant at the 1% level or better 

(see Table 5). This reveals the heterogeneity and variability in the average results when the 

ATT is estimated with the whole sample. 

Table 5: ATT in the farm income (in Euros) for the subsample of dairy and 
granivore farms 

  Estimate Std. Error t-stat   

Dairy subsample 1232 2548 0.477 

 Granivore subsample 18612 6864 2.711 
*** 

t-test for equally of means: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Stratification of the heterogeneous sample also leads to an increase in the robustness of the 

results. This is shown through the sensitivity analysis in Table 6, where the statistical 

significance and the magnitude of the treatment effect changes at a higher parameter than 

for the whole sample. For the dairy subsample the ATT is statistical insignificant for the 

assumption of randomisation but exceed the 5%-level when the parameter increases by 

30%. In comparison the parameter has to increase by 50% to change the conclusion of the 

granivore sample.  

  



Table 6: Rosenbaum bounds parameters for the results for the subsample of dairy and granivore 
farms 

parameter 
(Γ)

1
 

Dairy subsample Granivore subsample 

Wilcoxon P-value HL treatment estimate Wilcoxon P-value HL treatment estimate 

Lower 
bound

2
 

Upper 
bound

3
 

Lower 
bound

4
 

Upper 
bound

5
 

Lower 
bound

2
 

Upper 
bound

3
 

Lower 
bound

4
 

Upper 
bound

5
 

1.00 0.309 0.309 1374 1374 0.007 0.007 17261 17261 

1.05 0.237 0.388 790 1892 0.005 0.009 16565 17733 

1.10 0.178 0.469 229 2327 0.004 0.012 15856 18014 

1.15 0.131 0.547 -321 2868 0.003 0.015 15207 18573 

1.20 0.095 0.621 -790 3358 0.002 0.019 14072 19169 

1.25 0.068 0.687 -1217 3859 0.001 0.024 13282 19406 

1.30 0.048 0.746 -1651 4310 0.001 0.029 12766 19979 

1.35 0.033 0.796 -2209 4793 0.001 0.035 12400 20817 

1.40 0.023 0.839 -2696 5140 0.001 0.041 11948 21456 

1.45 0.015 0.874 -3066 5544 0.000 0.048 11497 21786 

1.50 0.010 0.903 -3456 6017 0.000 0.055 11230 22160 

1.55 0.007 0.926 -3901 6348 0.000 0.063 10611 22626 

1.60 0.005 0.944 -4293 6748 0.000 0.071 10073 24862 

1.65 0.003 0.958 -4693 7036 0.000 0.080 9825 25003 

1.70 0.002 0.969 -5025 7389 0.000 0.090 9466 25201 

1
 Odds of differential assignment due to unobserved factors 

2
 Lower bound significance level (on assumption of under-estimation of treatment effect). 

3
 Upper bound significance level (on assumption of over-estimation of treatment effect). 

4
 Lower bound point estimate (on assumption of under-estimation of treatment effect). 

5
 Upper bound point estimate (on assumption of over-estimation of treatment effect). 

5 Discussion and conclusions 

The heterogeneity of farms and the problem of self-selection are challenging a evaluation of 

treatments in agriculture. This is particularly the case for rural development measures, which 

have voluntary participation and heterogeneous outcomes. But knowledge about the 

selection mechanisms for a certain treatment, in combination with econometric methods, can 

help to overcome these problems. Next to Instrumental Variable estimation the Propensity 

Score Matching method has become a popular tool in evaluation.  

Basically, matching creates a new sample by identifying similar controls for each participating 

individual based on observed covariates. The selection of these covariates is a central issue 

and of high sensitivity. It is necessary to identify those variables which have the greatest 

influence on the decision to participate and on the outcome. PSM uses the probability of 

participation for each unit, estimated by a binary regression model, to reduce the matching 

dimension to one. In this paper we apply PSM in combination with the Difference-in-

Difference Estimator to assess causal effects in the farm income of the farm-investment 

programme in Austria.  

The results show a statistically significant and positive ATT (227 farms) in farm income per 

year by roughly 7,000 Euros. This might give a quite positive résumé of the farm-investment 

support programme in order to enhance the competitiveness of farms. But we cannot be sure 



if matching - including the difference-in-difference estimation - could reduce all the selection 

bias in the result. Particularly since this analysis deals with heterogeneous data the danger of 

hidden bias rises (Rosenbaum, 2005a). Therefore we apply sensitivity analysis to measure 

the effects of violation of the independence assumption. The sensitivity analysis for our 

model reveals that the causal conclusions are quite vague and can change with only a small 

amount of hidden bias. We split the sample in subsamples for the most favoured farm types, 

dairy and granivore farms in order to gain more homogenous samples. Then the matching 

procedure is done individually and the resulting effects differ dramatically. Whereas the effect 

on farm income for fostered dairy farms (104 farms) is not statistically significant, the effect 

for treated granivore farms (27 farms) is more than 18,600 Euros and statistically significant. 

Furthermore the results of the sensitivity analysis show that the models applied for the 

subsamples are slightly more robust to hidden bias than the model for the whole sample. 

The results indicate, on the one hand, that the effect for a small and specific number of farms 

exceeds the average effect by a high amount. Therefore the splitting of the sample and the 

effects shows a more accurate picture of the treatment. On the other hand, the increased 

robustness through sample splitting can be explained by the fact that some group of units, 

e.g. different farm types, should not be paired with each other in order to derive causal 

effects, and that homogenous samples might also allow more suitable parametric models 

and coefficient estimates. 

Therefore, especially in the context of agricultural treatment evaluation using observational 

studies, the need for homogenous samples is of server importance. Much attention needs to 

be focused on the Matching procedure, as the method has to obtain the independence 

assumption and the homogeneity in the sample. Even though the Matching procedure is 

basically a stratification of the sample, Matching on the estimated propensity score might 

often be misleading and encourage hidden biases. A much more effective method would 

therefore be the application of exact Matching, where treated and non-treated are exactly 

matched on their covariates and perfect stratification is done. This is especially the case 

when the inclusion of more covariates cannot describe opting for greater participation. Even 

though the exact Matching approach is limited to a small number of matching variables, next 

to individual adjustments it allows transparency for non-scientific stakeholders in the 

evaluation process. This is particular necessary as practical information is important for 

finding covariates. A large amount of work has to be put into pooling information and 

applying covariates which are plausible for the institutional environment, in which the study is 

carried out (Lechner, 2002). Transparency is also necessary, when the results are 

presented, as Rosenbaum (2010) argues: “An observational study that is not transparent 

may be overwhelming or intimidating, but it is unlikely to be convincing.” (Rosenbaum, 2010, 

147).  



All in all, we find that matching can help to solve the problems of heterogeneity and self-

selection in agricultural studies. Matching, at least, confronts the researcher with the process 

of causal exposure and also the limitations of available data. This is especially relevant in the 

context of agriculture, where management decisions are always dependent on the unique 

relationship between farm household and the farm enterprise, on-site and political conditions 

and also on personal attitudes of the farm manger. All these complex and unobservable 

factors make it difficult to explain selection mechanism in agriculture. However, Matching is 

definitely a useful tool to balance and pre-process the dataset and understand the direction 

of causal relationships. In special circumstances, causal claims can be drawn from the result. 
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 Appendix 

Table 7: Mean values of variables for participants and controls before and after Propensity-Score 
Matching for the dairy subsample 

  

Potential 
participants 

Potential 
controls 

  
Selected 

participants 
Selected 
controls 

Number of farms 108 249   104 104 

Dummy region south 0.185 0.225   0.192 0.231 

Dummy region west 0.213 0.197   0.192 0.240 

Dummy konv farming 0.787 0.767   0.788 0.769 

Age 52.824 53.964   52.817 52.154 

Labour 1.771 1.636 
* 

1.752 1.812 

Utilised agricultural area (log) 3.369 3.149 
*** 

3.341 3.320 

Share of rented land 0.285 0.224 
* 

0.284 0.264 

Livestock density 1.292 1.295 
  

1.292 1.291 

Share of equity 0.922 0.906 
  

0.925 0.917 

Non-farm income (log) 7.718 7.109 
* 

7.694 7.925 

Livestock (log) 3.412 3.192 
*** 

3.404 3.332 

Dairy cows (log) 2.789 2.599 
** 

2.806 2.761 

Pigs (log) 0.796 0.734   0.768 0.793 

t-test for equally of means: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
  

 

Table 8: Mean values of variables for participants and controls before and after Propensity-Score 
Matching for the granivore subsample 

  

Potential 
participants 

Potential 
controls 

  
Selected 

participants 
Selected 
controls 

Number of farms 39 77   27 27 

Dummy region south 0.256 0.247   0.111 0.259 

Dummy region west 0.000 0.013   0.000 0.000 

Dummy konv farming 0.974 0.961   0.963 0.963 

Age 51.821 54.208 
  

53.630 53.333 

Labour 1.730 1.503 
* 

1.687 1.576 

Utilised agricultural area (log) 3.565 3.121 
*** 

3.508 3.413 

Share of rented land 0.300 0.241 
  

0.262 0.260 

Livestock density 1.687 1.560 
  

1.506 1.728 

Share of equity 0.904 0.864 
  

0.932 0.940 

Non-farm income (log) 7.490 7.218 
  

7.392 7.207 

Livestock (log) 3.969 3.390 
*** 

3.815 3.812 

Dairy cows (log) 0.053 0.073 
  

0.077 0.139 

Pigs (log) 5.944 5.404 
* 

5.947 5.915 

t-test for equally of means: Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 


