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Abstract.  

Organic farms work under very heterogeneous natural-site and socio-economic 
conditions. This heterogeneity is of clear relevance for economic efficiency and for 
the decision of farms to convert to organic farming. In order to produce proper 
results efficiency analysis must consider such heterogeneity and self-selection 
aspects. This applies in particular to data envelopment analysis, since this technique 
does not calculate error terms, but include heterogeneity into efficiency results. One 
way to control for such effects is matching. Matching is based on the assumption that 
under a given vector of observable variables, the outcome of one individual is 
independent of the adoption of a specific treatment. In our paper we present how to 
implement matching into efficiency analysis of organic farms. We give a brief 
overview on literature applying this technique and we discuss which insights the 
application of matching might contribute to the current discussion on organic 
farming.  
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1. Introduction 

Efficiency of organic farms is mostly analysed by comparing organic and conventional farms (e.g. 

Tzouvelekas et al., 2001; Lansink et al., 2002; Kumbhakar et al., 2009; Mayen et al., 2010; Breustedt 

et al., 2011). A major discussion point in literature with regard to such a comparison is to what extent 

the production technology of organic and conventional farms is directly comparable. Kumbhakar et 

al. (2009) argues that, although most of the machinery can be used in both systems, production 

practices are due to the ban of applying synthetic fertilizers and plant protection and other regulations 

in organic farming too different to allow a direct comparison. Many authors take a similar position 

and claim that efficiency analysis has to be executed in different subsamples (Tzouvelekas et al., 

2001; Lansink et al., 2002; Breustedt et al., 2011). Further proposals are to use a joint technology, but 

to apply a Heckman-type sample selectivity correction to correct for endogeneity in the technology 

choice decision (Sipiläinen and Lansink, 2005). And finally, a variety of authors uses both, a joint 

and a separated frontier, and compares the results in the discussion (Mayen et al., 2010).  

A further important aspect in analysing efficiency of organic farms is triggered by the fact that 

agricultural work is shaped by natural-site conditions. Bowman and Zilberman (2013) emphasize in 

this context the importance of biological and geophysical factors, which impact beside input and 

output market conditions farmer decision-making and adoption of land use practices or technologies. 

Site conditions and their heterogeneity are of clear relevance for the decision of farms to convert to 

organic farming; for instance, farms on land of low quality might rather switch to organic farming 

(Lansink et al., 2002). As land is an important input variable in agriculture, site conditions also 

influence economic efficiency of farms as well as the result in efficiency. In order to produce proper 

results efficiency analysis must consider such heterogeneity in site conditions and self-selection 

aspects (Mayen et al., 2010). This applies in particular to data envelopment analysis, since this 

technique does not calculate error terms, but include heterogeneity into efficiency results (Lansink et 

al., 2002). 

Literature shows that there are several ways to cope with heterogeneity and self-selection. Breustedt 

et al. (2011) include an indicator for site conditions, the so-called EMZ, as an additional non-

discretionary input into their efficiency analysis. (Mayen et al., 2010) apply a separate frontier and 

match data sets on site conditions before running the efficiency analysis in order to compare the 

efficiency and productivity of organic and conventional dairy farms in the United States. As 

Kellermann and Salhofer (2014) argue, this procedure has the advantage that “the measured 

differences are directly and solely attributable to the difference in technology”. Whereas in other 

study areas authors use matching after executing efficiency analysis (Sauer et al., 2014). 
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In our paper we aim to analyse the impact of site conditions on efficiency results of organic farms. 

Therefore we apply a data envelopment analysis and execute this procedure in two separate 

subsamples. In order to measure the influence of site conditions we use a matching procedure. 

Matching is either applied before or after DEA analysis, in order to use the explanatory power of 

both approaches. The remainder of our paper is organized as follows: In Section 2 we introduce 

briefly the used methods: data envelopment analysis and genetic matching. In Section 3 we present 

the case study, define the required economic input and output variables and introduce our data basis. 

The results of our calculations are displayed in Section 4. Finally, in Section 5, we discuss our results 

and draw conclusions for the further development of our model.  

2. Methods 

The first part of the following section contains a description of the methods applied in our empirical 

analysis, namely data envelopment analysis and matching. We introduce the applied methods only 

very briefly, since all methods itself are well-known and well-described in literature. However, 

further information on the applied methods can be found in the indicated references. 

DEA is a non-parametric mathematical programming approach. It enables the comparison of 

production performances of so-called Decision-making Units (DMU). In our case these DMUs are 

farms deciding on the use of production factors in order to minimize farm input. The performance of 

each farm is rated by calculating the output-to-input ratio of the respective production processes; the 

less input a farm requires for producing a given output or the more output it produces with a given 

input, the higher is the productivity of the farm. The final efficiency score is derived by 

benchmarking the output-to-input ratio of an individual farm against the output-to-input ratio of all 

best-practice farms.  

The linear programming problem to be solved for each farm is as follows: 

݉݅݊∅,λ,δ	ߠ	ݏ.  .ݐ

െݕ  ߣܻ  0 

ݔߠ െ ߣܺ  0 

ܰ1ᇱߣ ൌ 1 

ߣ  0 

0 ൏ ߜ  1 

where  is the overall technical efficiency score for the ith firm, yi is a Mx1 vector of output 

quantities for the i-th farm, Y is a NxM matrix of output quantities for all N farms,  is a Nx1 vector 

of weights, xi is a Kx1 vector of input quantities for the i-th farm and X is a NxK matrix of input 

quantities for all N farms. In DEA the relevance of input (X) und output variables (Y) is expressed by 
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weights (η in the input case, μ in the output case), which are determined in a way that the assessed 

DMU achieves the highest possible level of efficiency. In order to derive input weights η and output 

weights μ, additional to the above described envelopment model the multiplier model has to be 

solved (Cooper et al., 2007). The constraint ܰ1ᇱߣ ൌ 1 implies the sum of the lambdas equals one and 

allows for a variable returns to scale (VRS) technology. 

Matching follows the Conditional Independence Assumption (CIA) and goes back to the works of 

Rubin (1977) and Rosenbaum and Rubin (1983). Matching basically controls for observable 

variables assuming that under a given vector of observable variables (Z), the outcome (Y) of one 

individual is independent of treatment or technology (T):  

{Y0, Y1 ⫫ T} |Z      (2) 

where ⫫ denotes independence (Sekhon, 2009). Therefore pairing participating and non-participating 

farms based on observable variables (covariates) allows the interpretation of differences with regard 

to respective outcome variables as unbiased effect estimates.  

As matching is performed in a non/semi-parametric way, it has the considerable advantage of 

requiring fewer functional forms than regression-based analyses (Lechner, 2002b; Smith and Todd, 

2005; Imbens and Wooldridge, 2009). Further advantages of matching are its allowance for arbitrary 

heterogeneity of the effects, its simplicity and its intuitive appeal (Lechner, 2002b, a). 

This requires the identification of those Z which influence the outcome and the probability of 

participation but are not influenced by treatment. Distance functions are used to control for Z of 

individuals, which can be done by approaches which match directly on covariates as well as using 

aggregated distance functions. Whereas the first is referred as a direct matching (DM) approach, for 

aggregated distance functions approaches like propensity score matching, mahalanobis matching and 

genetic matching are used. For our analysis we apply a genetic matching approach which is 

nonparametric and basically a generalization of propensity score and mahalanobis distance matching. 

Genetic matching optimizes the balance of observed covariates between participating and non-

participating groups using a genetic algorithm (Sekhon, 2011). 

The variety of matching algorithms is big and includes nearest-neighbour matching, calliper 

matching, radius matching, stratification matching, interval matching, kernel matching and local 

linear matching1. Literature gives almost no advice on the superiority of any one of these algorithms 

over another. The selection of the appropriate algorithm should rather be done individually, 

depending on the structure of data (Zhao, 2004). In our study, we apply a nearest-neighbour 

algorithm. This algorithm pairs each organic (treated) farm with this conventioal (control) farm, 

which shows the smallest distance with regard to the applied matching covariates (Caliendo and 

                                                            
1

 See Caliendo and Kopeinig (2008) ) for detailed descriptions of matching algorithms. 
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Kopeinig, 2008). Matching can be considered successful when the mean of the covariates between 

treated and control group is balanced. Balance can be judged by conventional testing. 

3. Case study definition 

We apply the model on an Austrian farm panel data set consisting of data for 647 voluntary 

bookkeeping farms for the year 2012. In order to ensure a principal comparability of farms, we 

consider only forage farms (output from grazing animals is greater than 66% of total output) and 

exclude all other farm types. 

Using DEA for the assessment of farms, we have to define appropriate input and output factors. A 

fundamental requirement doing this is that the factors have to cover the full range of resources used. 

Moreover, all relevant activity levels and performance measures have to be captured (Dyson et al., 

2001). As input variables we use the cultivated area (ha; include agricultural and forested area), 

labour (WU; include family members and employees), capital (EUR; depreciation) and intermediate 

inputs (EUR). As output variables we use the total farm revenue (EUR), including agricultural 

services and all payments for agri-environmental programmes. The resulting technical efficiency 

measure expresses the economic success of the farm and therefore represents the performance of 

farmers. In this case study we apply a input-oriented DEA, which results in efficiency scores 

explaining the individual potential of minimizing the input, at a given output level, to increase 

productivity. The DEA in our analysis is executed with the R-package “Benchmark”. 

In order to control for site conditions we use the following matching covariates (Z): the main 

production region, the altitude of the farm, the mountain farm cadaster, the value for taxing real-

estate based on government valuation (“Einheitswert”) per hectare land, a dummy variable for alpine 

farming, ,the share of forested area the reduced utilized agricultural area (alpine and extensive 

grassland measured as 1/2 of 1/3 ), the share of grassland, the share of extensive pastures as well as 

the share of extensive grassland, and. The matching algorithm in our analysis is run with the R-

package “Matching” by J.S. Sekhon (Sekhon, 2011). 
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Table 1: Mean (and standard deviation) of matching covariates, input and output variables with and without 
matching 

With matching Without matching 
Organic Conventional Organic Conventional 

Number of farms 170 477  170 170  

Main production region 1 (%) 
28.82 10.69 *** 28.82 26.47 
(45.43) (30.93)  (45.43) (44.25)  

Main production region 2 (%) 
21.18 10.06 *** 21.18 18.82 
(40.98) (30.12)  (40.98) (39.21)  

Main production region 3 (%) 
9.41 18.45 *** 9.41 14.12 
(29.29) (38.83)  (29.29) (34.92)  

Main production region 4 (%) 
25.88 21.17 *** 25.88 25.88 
(43.93) (40.9)  (43.93) (43.93)  

Main production region 5 (%) 
1.18 3.56 *** 1.18 1.18 
(10.81) (18.56)  (10.81) (10.81)  

Main production region 6 (%) 
11.18 30.61 *** 11.18 12.35 
(31.6) (46.13)  (31.6) (33)  

Main production region 7 (%) 
1.18 4.61 *** 1.18 0.59 
(10.81) (21)  (10.81) (7.67)  

Main production region 8 (%) 
1.18 0.84 *** 1.18 0.59 
(10.81) (9.13)  (10.81) (7.67)  

Altitude (m) 
692.02 595.91 *** 692.02 702.64 
(227.34) (225.5)  (227.34) (226.98)  

Mountain Farm Cadastre (Pt.) 
105.38 74.17 *** 105.38 107.58 
(76.62) (73.12)  (76.62) (73.92)  

Einheitswert (€) 
446.16 582.33 *** 446.16 444.86 
(227.75) (312.34)  (227.75) (239.75)  

Alpine farming  (%) 
31.18 14.47 *** 31.18 27.06 
(46.46) (35.21)  (46.46) (44.56)  

Share of forested area (%) 
28.98 25.55 * 28.98 28.92 
(16.61) (16.98)  (16.61) (16.22)  

Reduced agricultural area (ha) 
28.16 28.54 28.16 27.22 
(15.53) (16.4)  (15.53) (15.37)  

Share of grassland (%) 
79.53 61.31 *** 79.53 78.68 
(25.59) (28.91)  (25.59) (26.21)  

Share of extensive pastures (%) 
6.62 4.82 6.62 6.19 
(11.23) (9.1)  (11.23) (10.52)  

Share of extensive grassland (%) 
1.06 0.55 1.06 0.93 
(3.54) (2.3)  (3.54) (2.92)  

Cultivated area (ha) 
57.46 44.86 ** 57.46 50.31 
(47.65) (28.75)  (47.65) (32.63)  

Labour (WU) 
1.67 1.68 1.67 1.67 
(0.59) (0.59)  (0.59) (0.57)  

Capital (€) 
47480 65361 *** 47480 60267 ** 

(28631) (45584)  (28631) (40569)  

Intermediate inputs (€) 
18458 19549 18458 19632 
(10362) (11232)  (10362) (11195)  

Output (€) 
84932 101412 ** 84932 93283 
(51767) (67226)  (51767) (57882)  

Number in parentheses show standard deviations; t-test, Chi square test and McNemar test are used for equality of means: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ ’ 1; 
Source: Own calculation   
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The means of matching covariates (Z) as well as in- and output variables for organic farms and all 

conventional farms without matching are displayed in Table 1. The table shows that organic forage 

farms significantly differ from conventional farms with regard to the location in main production 

regions. So are organic farms more likely located in the rather alpine main production regions 1, 2, 4 

and 8. Also the mean altitude and the mountain farm cadastre points are significantly higher and the 

“Einheitswert” lower which indicates in average less favourable conditions for organic farms. 

Furthermore organic farms show a higher share of farms with alpine farming and a higher share of 

forested area per farm. Whereas the farm groups show similar mean values for “reduced” agricultural 

area, share of extensive pastures and grassland, they differ in the share of grassland, which is higher 

on organic farms. The input variable cultivated area, which includes next to agricultural area, the 

total alpine and extensive grassland and forested area, is significantly higher on organic forage farms. 

Labour and intermediate inputs are similar in both groups, but capital and output is higher on 

conventional farms.  

The matching procedure reduces the number of conventional farms and balances the mean values of 

all matching covariates (see Table 1). With regard to in- and output variables the mean value on 

conventional farms increases for cultivated area and decreases for capital and output. The mean 

values for labour and intermediate inputs remain similar for the two groups. This indicates that farms 

with rather more land, but lower capital and output remain in the sample. 

4. Presentation of technical efficiency results  

In the following chapter we present preliminary results from a first model run, where 6 different 

analysis where made: (1) DEA without matching for organic farms; (2) DEA without matching for 

conventional farms; (3) DEA after matching for organic farms; (4) DEA after matching for 

conventional farms; (5) DEA prior matching for organic farms; (6) DEA prior matching for 

conventional farms. An overall view on the results shows that the variance of efficiency scores in all 

analysis is quite high. So, the minimum value is about 0.4 and the maximum value 1.0 in almost all 

analysis (Table 2). However, mean technical efficiency values distinguish statistically significant 

between organic and conventional farms in case of the without matching (Analysis 1 and 2). So is the 

mean value of organic farms with 0.812 statistically significant higher than the 0.765 of conventional 

farms (Table 2). The results of other studies applying this procedure vary: Lansink et al. (2002) and 

Tzouvelekas et al. (2001) also find higher mean efficiency for organic farms (0.93 vs. 0.69; 0.69 vs. 

0.58 (output-oriented)), but Mayen et al. (2010) as well as  Sipiläinen and Lansink (2005) detect 

lower mean efficiencies of organic farms. 
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Whereas the mean efficiencies of organic farms are constant across all models (Analysis 1, 3 and 5), 

matching influences the efficiency results of conventional farms as farms are dropped from the 

sample (see Table 2). When DEA is applied after matching (Analysis 4) the average technical 

efficiency of conventional farms increases significantly to 0,831, which is slightly higher than 

comparable organic farms (0,812), but not statistically significant different. Fairly similar result with 

regard to absolute height of mean efficiencies and differences between both groups is found in 

Mayen et al. (2010). Furthermore, we find that the application of this procedure leads to a loss of 

formerly efficient conventional farms and the new efficiency frontier moves closer to the remaining 

farms. However, when DEA is carried out prior matching (Analysis 6) the efficiency frontier does 

not change but conventional farms are dropped after the efficiency analysis. Thus the same efficiency 

scores as in analysis 2 are estimated but with only those farms which are similar to the organic farms. 

This leads in our case to a small decrease in mean technical efficiency of conventional farms (0.747) 

in comparison to Analysis 1 (0.765). Consequently, it is to conclude that rather more efficient farms 

are deleted by matching, so that in average less efficient farms remain in the sample. 

Table 2: Results of technical efficiency 

Organic Conventional  

Without matching  

Number of farms 170 477  

Mean  0.812 0.765 *** 

SD 0.151 0.135  

Min. 0.422 0.368  

Max. 1.00 1.00  

DEA after matching   

Number of farms 170 170  

Mean  0.812 0.831  

SD 0.151 0.140  

Min. 0.422 0.387  

Max. 1.00 1.00  

DEA prior to matching   

Number of farms 170 170  

Mean  0.812 0.747 *** 

SD 0.151 0.138  

Min. 0.422 0.368  

Max. 1.00 1.00  

Technical efficiencies are calculated using an input-oriented and variable return zo scale model. Number in parentheses 
show standard deviations; t-test isused for equality of means: Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ ’ 1; 
Source: Own calculation 

 

5. Discussion and conclusions 

The aim of our paper is to analyse the impact of site conditions on efficiency results of organic farms. 

To do so we apply data envelopment analysis and estimate efficiency scores for Austrian forage 
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farmers. In a second step we combine this approach with a matching procedure to control for 

different site conditions. Our study finds, when matching is applied the mean efficiency results alter 

dramatically. This is also found in Mayen et al. (2010) who apply a similar approach. This leads us to 

the conclusion to emphasize the necessity of establishing comparable data sets in order to allow 

accurate cross conventional organic farm comparisons. This applies in particular, when a separate 

frontier approach is applied and the influence of site conditions cannot be considered by an 

implementation of covariates in the productivity model (as it is regularly done in stochastic frontier 

analysis) or by a second stage analysis (as it is regularly practised in connection with DEA models). 

We therefore recommend applying a matching procedure when establishing an organic conventional 

farm comparison.  

As we also applied the matching procedure after the DEA we find a loss of efficient conventional 

control farms and therefore a move of the frontier toward the remaining farms. This explains the 

increasing mean efficiency of conventional farms in Analyses 4. Which leads to the conclusion that 

we have to consider that we can not be sure about their actual difference in productivity (Tzouvelekas 

et al., 2001). This is because efficiency scores have to be seen as relative values to the frontier which 

can also be different in the individual technology. Future works should aim to consider this aspect 

and should at least simultaneously run a joint frontier model in order to get an idea on the “real” 

distance between organic and conventional farms. 

We also want to stress, that we solely controlled for heterogeneity in site conditions and not on the 

entire selection of organic farming. This is done e.g. in Mayen et al. (2010) but requires the 

availability of more data. Especially data of organic farms prior to their decision of adopting organic 

farming would be helpful to cover the whole selection process of organic farming. If this is not the 

case, production variables are often influenced by organic farming itself and therefore violate the 

independence assumption in the matching procedure.  
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