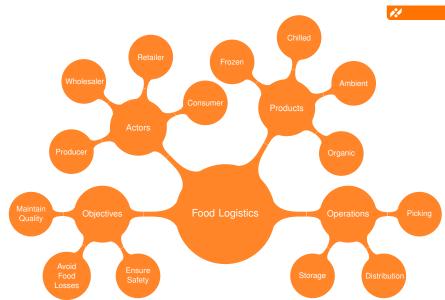


Simulating fresh food supply chains by integrating product quality

Magdalena Leithner and Christian Fikar

Institute of Production and Logistics
BOKU - University of Natural Resources and Life Sciences, Vienna

OR2017 - Berlin, September 2017


Introduction

- In Europe, nearly one third of produced fresh fruits and vegetables (FFVs) gets lost along postharvest handling (Jedermann et al., 2014).
- Supply chain management has gained importance to strengthen competitiveness in the fresh food sector and to reduce food and quality losses (van der Vorst et al., 2008).
- Supply chain management in food logistics is challenged by
 - rising world population
 - ongoing urbanization
 - a shift to more fresh diets (Lundqvist et al., 2008)

Introduction

Background

The logistics of perishables differs significantly from non-perishable items

- I imited shelf life
- Various sources of uncertainties
 - ► Biological variance
 - Unpredictable weather conditions
 - Seasonable fluctuating supply and demand
- Quality decrease over time, mostly depending on temperature and environmental conditions.

Background

Operational research methods present powerful tools to handle the complexity of food logistics

- Linear programming is the predominant modelling technique (Soto-Silva et al., 2016)
- Various works use simulation methods (Borodin et al., 2016)
 - Incorporate uncertainties
 - Integration of food quality models
 - Supply and market uncertainties taken into account
- Lacking consideration of changes in product quality and interdependencies between quality and chain design (van der Vorst et al., 2008)

Problem Description

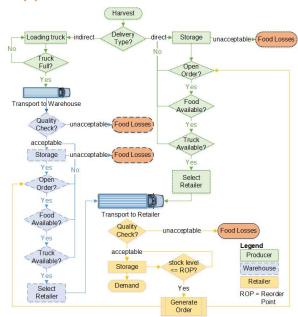
Problem Description

- Dynamic problem with uncertain supply and demand
- Immediate pre-cooling after harvest needed
- Product qualities subject to storage & transport conditions
- Objective
 - minimize food losses
 - minimize travel durations
 - maximize service levels
- Decisions
 - Which retailer is delivered by whom?
 - Direct or indirect deliveries?
 - Which product should be assigned?

Decision Support System (DSS)

Development of a DSS to reduce food waste along regional fresh fruit supply chains

- Combining geographic network data with simulation and optimization methods
- Modelling food decay based on quality functions, storage and transport temperatures
- Simulating demand request based on Poisson-distributed arrival rates
- Integration of stock rotation schemes



Discrete Event Simulation

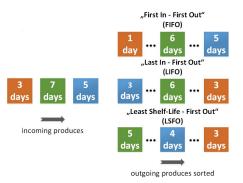
- Regional fresh fruit supply chain
 - Direct deliveries (producers to retailers)
 - Indirect deliveries (producers to warehouse to retailers)
- Various temperatures along supply chain
- Quality updated continuously

Components	Representation
Perishable Item	perishable product with implemented specific quality attribute
Producer	produces perishable product with biological variations in quality
Batch	implemented to collect perishable items for one truck load
Truck	climate controlled truck (producers)
Warehouse	cooled warehouse
Warehouse Truck	climate controlled truck (warehouse)
Retailer	end destination of perishable items where consumers meet their demand

BOKU

Modelling the quality of fresh fruits and vegetables Generic Keeping Quality Model implemented (Tijskens and Polderdijk, 1996)

- Calculates keeping quality as a function of time, temperature, reaction rate and initial quality.
- 'Keeping Quality' is the time until a commodity becomes unacceptable.
- Limit of acceptance depends on
 - initial quality
 - intrinsic characteristics
 - consumer's perceptions
- At constant environmental conditions, known initial quality and a defined quality limit, always the same quality attribute hits the acceptance limit first.


Distribution Strategies

- Three strategies are compared on how to fulfil incoming replenishment orders
 - serving orders in accordance to arrival time
 - by distance to the retailer's location
 - randomly
- Full truckloads are assumed

BOKU

Stock Rotation Schemes (SRS)

- SRS aim to limit food losses
- Need to be adapted to product characteristics and requirements
- Implemented schemes

Test Settings

- Investigation of the impact of (i) delivery strategies, (ii) distribution strategies and (iii) stock rotation schemes on
 - Food losses (items)
 - Travel durations (h)
 - Cycle service level (%)
- 100 replications per setting and averages are reported
- Developed with AnyLogic 8.1.0 facilitating GraphHopper and OpenStreetMap for real-world routing network

Study Area

A regional strawberry supply chain in Lower Austria is modelled.

- 10 strawberry farmers in Lower Austria (GLOBALG.A.P database)
- 1 warehouse in the South of Vienna
- 23 retail stores in the biggest cities in Lower Austria
- Simulation horizon: 2 weeks

Study Area

Quality Losses of Strawberries

- Short shelf life (5-7 days)
- Generic Keeping Quality Model of Tijskens and Polderdijk (1996)
 - Keeping Quality limited by spoilage rate (Schouten et al., 2002)
 - Batch Keeping Quality

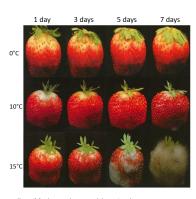


Figure based on Nunes, M.C. do N., 2008. Color atlas of postharvest quality of fruits and vegetables, 1.edn. Blackwell Publ, Ames, Iowa.

Handling temperatures along Strawberry Supply chain

	Temperature (°C)					
	Hertog et al., 1999	Hertog et al., 1999	Nunes et al., 2014	Nunes et al., 2003	in this worl	
Location		(closed cold chain)	(blackberries)			
Field	_	_	23.9	_	23.9	
Producer	12	4	_	3	4	
Warehouse	4	4	1.1	3	3	
Transport	10	4	0.6-0.7	3	4	
Retailer	16	4	6.7	20	10	

Preliminary Results

Experiment: Stock Rotation Schemes

Impact of distribution strategy and stock rotation schemes on food losses (indirect deliveries - 2 warehouse trucks).

	Delivery	FirstOrder	NearestRetailer	RANDOM
SRS			(FoodLosses)	
LSFO		0	0	0
FIFO		595	0	620
LIFO		18532	11925	18567

- Four warehouse trucks substantially reduce food losses under LSFO and FIFO whereas higher amounts of food losses occur under LIFO.
- If less trucks are available, the LSFO approach produces less food losses than the FIFO approach.

Preliminary Results

Experiment: Distribution strategy

Impact of distribution strategy on service level, travel duration and food losses (indirect deliveries - 4 warehouse trucks).

Delivery	FirstOrder	NearestRetailer	RANDOM
ServiceLevel (%)	86	92	85
TravelDuration (h)	919	894	921
FoodLosses (items)	2164	1013	2292

Regional deliveries (NearestRetailer) positively influence travel duration, the amount of food losses and service levels.

Drawback: stores unevenly served

Conclusion

Conclusion

- Integration of food quality with delivery strategies in food supply chain simulations are of importance
- Applying the LSFO substantially reduces food losses
- Regional deliveries reduce travel distances, food losses and improve product availability

Future Work

- Integration of replenishment strategies
- The assignment of low quality products to shorter routes
- Expending the product range to consider interactions among various FFVs
- Improve vehicle routing algorithms

University of Natural Resources and Life Sciences, Vienna

Department of Economics and Social Sciences Institute of Production and Logistics

Magdalena Leithner

Feistmantelstraße 4, A-1180 Vienna magdalena.leithner@boku.ac.at

This work was funded by the Austrian security research programme MdZ of the Federal Ministry for Transport, Innovation and Technology (bmvit).

References

- ******
- Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N., 2016. Handling uncertainty in agricultural supply chain management: A state of the art. European Journal of Operational Research 254, 348-359.
- Fredriksson, A., Liljestrand, K., 2015. Capturing food logistics: a literature review and research agenda. Int.
 J. Logist. Res. Appl. 18, 16-34.
- Hertog, M., Boerrigter, H.A.M., van den Boogaard, G.J.P.M., Tijskens, L.M.M., van Schaik, A.C.R., 1999.
 Predicting Keeping Quality of strawberries (cv. 'Elsanta') packed under modified atmospheres. an integrated model approach. Postharvest Biology and Technology 15, 1-12.
- Jedermann, R., Nunes, M.C.N., Uysal, I., Lang, W., 2014. Reducing food losses by intelligent food logistics. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Angineering Sciences 372. 20130302.
- Lundqvist, J., de Faiture, C., Model, D., 2008. Saving Water: From Field to Fork Curbing Losses and Wastage in the Food Chain. SIWI Policy Brief, Stockholm.
- Nunes, M.C.N., Nicomento, M., Emond, J.P., Melis, R.B., Uysal, I., 2014. Improvement in fresh fruit and vegetable logistics quality: berry logistics field studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, 20130307.
- Nunes, M.C.N., 2008. Color atlas of postharvest quality fruits and vegetables, 1. ed. Blackwell Publ. Ames, lowa.
- Nunes, M.C.N., Emond, J.P., Brecht, J.K., 2003. Quality of strawberries as affected by temperature abuse during ground and in-flight and retail handling operations, Acta Horticulturae.
- Schouten, R.E., Kessler, D., Orcaray, L., van Kooten, O., 2002. Predictability of keeping quality of strawberry batches. Postharvest Biology and Technology 26, 35-47.
- Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C., Pla-Aragones, L.M., 2015. Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 345-355.
- Tijskens, L.M.M., Polderdijk, J.J., 1996, A generic model for keeping quality of vegetable produce during storage and distribution. Agric. Syst. 51. 431-452.
- van der Vorst, J., Tromp, S.O., van der Zee, D.J., 2009. Simulation modelling for food supply chain redesign: integrated decision making on product quality, sustainability and logistics. International Journal of Production Research 47, 6611-6631.