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Statistics formulas for use in the exam of
“Applied mathematics and biostatistics”

1 Preliminaries

This document may be used during the written exam of the course “Applied mathematics and biostatistics”. It can
be printed out one or double sided on A4 paper. Arbitrary handwritten notes may be added on both sides. The exam
covers the entire subject taught during the course, not only the content of this document!

2 Random variables

Random variables

In statistics observed measurement variables are modelled by random variables (RV), often denoted by X:

discrete: sample space is finite or countably infinite, e.g., set of integers, subsets of positive integers, . . . : {x1, x2, . . .}
continous: sample space is uncountably infinite, e.g., real numbers, intervals, . . .

Discrete random variables

• The sample space of X is at least countably infinite

MX = {x1, x2, . . .} .

• Probability mass function
pX(xi) = P (X = xi)

• The sum of probabilities of all possible realisations xi has to be equal to 1, i.e.:
∑

xi∈MX

pX(xi) = 1

Note: The probabilities of possible realisations xi do not have to be necessarily equal!

Continuous random variables

• The sample space of X is uncountably infinite, e.g., interval of real numbers.

• Because there exists uncountably infinite many elements x in the sample space of X, we have

P (X = x) = 0 .

Positive probabilities, i.e., probabilites ≥ 0, can only be assigned to intervals!

• Density function:
non-negative function fX : R→ R+

• Properties:

FX(x) = P (X ≤ x) =

∫ x

−∞
fX(t) dt

P (a < X ≤ b) =

∫ b

a

fX(x) dx,

∫ ∞

−∞
fX(x) dx = 1

• The function FX(x) = P (X ≤ x) is called Cumulative distribution function (CDF ); it can also be defined for
discrete random variables in an analogue way.

Expectation and variance

E(X) = µX =





∑
xi∈MX

xi pX(xi) if X discrete

∫∞
−∞ x fX(x) dx if X continuos

Var(X) = E((X − µX)2) =





∑
xi∈MX

(xi − µX)2 pX(xi) discrete

∫∞
−∞(x− µX)2 fX(x) dx continuous
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Univariate normal distributions

A continuous random variable X is called normally distributed,
X ∼ N(µ, σ2), if it has the following density function

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

E(X) = µ

Var(X) = σ2

A univariate normal distribution with µ = 0 and σ2 = 1 is called standard normal distribution.

Lognormal distribution

A log-normal distribution is a continuous probability distribution of a non-negative random variable whose logarithm
is normally distributed. If Y is a random variable with a normal distribution, then X = exp(Y ) has a log-normal
distribution; likewise, if X is log-normally distributed, X ∼ LN(µ, σ2), then Y = log(X) is N(µ, σ2)-distributed.

The density function of X is defined by

f(x) =
1

xσ
√

2π
exp

(
−(log(x)− µ)2/2σ2

)
, x > 0.

E(X) = exp(µ+ σ2/2),

Var(X) = exp(2µ+ σ2) · (exp(σ2)− 1).

Confidence interval for the mean

Let’s assume the sample is arbitrarily distributed with known variance σ2. Then

z =
X̄ − µ
σ/
√
n
∼ N(0, 1)

is approximately standard normally distributed and the limits of the approximate confidence interval are as follows

θl = X̄ − z1−α/2
σ√
n

θu = X̄ + z1−α/2
σ√
n

where zγ is the γ-quantile of N(0, 1). If the variance is unknown we may again substitute σ2 by σ̂2. However, this
approximation is only valid for large n.

Hypothesis testing

Let’s sort out the formal steps of statistical hypothesis testing:
1. Fix the significance level (or size) α (which is equal to fixing the confidence level).
2. Formulate the null hypothesis H0 and the alternative hypothesis H1.
3. Identify a test statistic that will assess the evidence against the null hypothesis. With the test statistic one can

estimate how likely a certain property of the sample is if the null hypothesis were true. Under the null hypothesis
the test statistic has a certain pre-defined probability distribution which can be used to construct a confidence
interval for the test statistic. Hence, the decision problem is reduced to a single value.

4. If the test statistic is outside the confidence intervall (= acceptance region) the null hypothesis is rejected. (The
null hypothesis is too unlikely given the sample.)

5. The used test statistic specifies which property of the sample is examined (location, spread, . . . ).
Type I error: The null hypothesis is true, although it is rejected.
Type II error: The alternative hypothesis is true, but we fail to reject the null hypothesis.

Truth
Test decision H0 H1

do not reject H0 1 - size type II error
reject H0 type I error power

Optimal test: maximizing the power given the size; minimizing both types of errors is not possible.
The balance between both types of errors depends usually on the practical application.
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The most important tests

t-test: testing means, one-sample t-test, independent two-sample t-test, t-test for paired samples; for small sample(s)
we have to assume that the data generating process follows a normal distribution

rank tests: non-parametric test testing medians, e.g., Wilcoxon signed-rank test, Wilcoxon rank-sum test; assuming
arbitrary, but identically shaped distribution(s).

more than 2 groups: ANOVA (assuming normal distribution), Kruskal-Wallis test (based on ranks).

variances: F-test (two groups), Levene’s test (more groups).

contingency tables: χ2-test of independence.

Margin of error for yes/no-questions

Let’s ask n persons a yes/no-question. Then, the number of “yes” is binomially distributed with parameters n and p,
where p is the true (but usually unknown) percentage of persons answering “yes”.

A single person can answer “yes” (1) or “no” (0); this corresponds to a random variable X with

E(X) = p ∗ 1 + (1− p) ∗ 0 = p

Var(X) = E(X2)− (EX)2 =

= p ∗ 12 + (1− p) ∗ 02 − p2 =

= p− p2 = p(1− p)

The precentage for n persons is calculated as the sample mean

p̂ = x̄ =
1

n

n∑

i=1

xi .

According to the central limit theorem it is asymptotically normal distributed with expectation p and variance p(1−
p)/n:

z =
p̂− p√

p(1− p)/n
∼ N(0, 1)

As 1.96 is the 0.975-quantile of the standard normal distribution, z is within the range [-1.96,+1.96] with probability
95%. This can be used to calculate 1. the margin of error given the sample size, or 2. the sample size given the desired
margin of error:

∆p ≈ 1√
n

n ≈ 1

(∆p)2

3 Linear models

Data: (yi, xi1, . . . , xik), i = 1, . . . , n, with a metric variable y and several metric or (binary coded) categorial regressors
x1, . . . , xk.
Model:

yi = β0 + β1xi1 + . . .+ βkxik + εi , i = 1, . . . , n .

The errors ε1, . . . , εn are independent and identically distributed (i.i.d.) with

E(εi) = 0 , Var(εi) = σ2.

In matrix form we have
y = Xβ + ε

with E(ε) = 0 and Cov(ε) = E(εε′) = σ2I. The design matrix X has full (column) rank, i.e., rg(X) = k + 1 = p.
The estimated linear function

ŷi = f̂(x1, . . . , xk) = β̂0 + β̂1x1 + . . .+ β̂kxk

can be interpreted as an estimate Ê(y|x1, . . . , xk) of the conditional expectation of y given the covariates x1, . . . , xk
and hence used to predict y.

3 LINEAR MODELS 4

Estimation of parameters and residuals

In order to estimate the unknown parameter βi we use the ordinary least squares (OLS) method:

SQR =

n∑

i=1

(yi − ŷi)2 =

n∑

i=1

(
yi − (β̂0 + β̂1xi1 + . . .+ β̂kxik)

)2
→ min

The residuals are computed by ε̂i = yi − ŷi.

1. The average of the residuals is equal to zero:

n∑

i=1

ε̂i = 0 bzw. ¯̂ε =
1

n

n∑

i=1

ε̂i = 0.

2. The average of the estimated values ŷi is equal to the average of the observed values yi:

¯̂y =
1

n

n∑

i=1

ŷi = ȳ

.

3. The center of the data is an element of the fitted hyperplane:

ȳ = β̂0 + β̂1x̄1 + · · ·+ β̂kx̄k.

Linear influence of covariates

At a first glimpse, it seems to be very restrictive regarding only linear models of covariates. Nevertheless, using linear
models, we can model nonlinear relationships too. E.g.:

yi = β0 + β1 log(zi) + εi,

Here, the influence of the explanatory variable zi is a logarithmic one. With xi = log(zi) we get a linear model:
yi = β0 + β1xi + εi. In general, we can transform nonlinear relationships into linear models as long as they are linear
in the parameters.

Estimation in R

In R parameters of linear models are estimated using the function lm:

> meinmodell <- lm(y ~ x1 + x2 + x3, data=meinedaten)

The first argument of the function, i.e., the part with the symbol ∼, is the so-called model formula. On the left
hand side we put the name of the measurement variable (column in the data set), on the right hand side we put all
predictors:

1. Variables seperated by the symbol “+” will not be added, but included in our model as single predictors.
2. Using terms like “x1 * x2” will lead to models where the main effects as well as the interactions are included in

the model (cf. later).
3. A “.” in the model formula refers to all variables (main effects) in the data set not used on the left hand side.

E.g.: y ~ .

4. A “-” in front of a variable means to exclude this variable from the model. E.g.: y ~ . - x1

An example: The call

> meinmodell <- lm(y ~ x1 + x2 * x3, data=meinedaten)

corresponds to the model
y = β0 + β1x1 + β2x2 + β3x3 + β4x2x3 + ε .

Basic mathematical functions can be directly used within formulas.
The call

> meinmodell <- lm(log(y) ~ x1 + x2 * sin(x3), data=meinedaten)

corresponds to the model

log(y) = β0 + β1x1 + β2x2 + β3 sin(x3) + β4x2 sin(x3) + ε .
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Variance decomposition

Question: How well does the hyperplane fit the data? The variance is a measure of the variability of the response
variable Y :

ŝ2Y =
1

n− 1

n∑

i=1

(yi − ȳ)2

In regression analysis we usually use the following sum of squares

SQT = (n− 1)ŝ2Y =
n∑

i=1

(yi − ȳ)2

(SQT = “Sum of sQuares Total”).
We have

SQT = SQE + SQR

with
• Sum of sQuares Total

SQT =
n∑

i=1

(yi − ȳ)2

• Sum of sQuares Explained

SQE =
n∑

i=1

(ŷi − ȳ)2

• Sum of sQuares Residual

SQR =
n∑

i=1

(yi − ŷi)2

Explained variability

R2:

R2 =
SQE

SQT
= 1− SQR

SQT
∈ [0, 1]

We have R2 = Cor(y, ŷ)2 = r2yŷ.

R2 ≈ 0: The variance of the residuals is as large as the variance of Y , there is no linear (!) influence of X on Y .

R2 ≈ 1: The variance of the residuals is (almost) equal to zero, the observed data are (almost) part of the fitted
hyperplane.

Hypothesis testing

• The parameter estimators are random variables and depend on the sample.

• If the errors are normally distributed the parameter vector β̂ is multivariate normally distributed (with true but

unknown location parameter β which is equal to the expected value of β̂, i.e., E(β̂j) = βj , and covariance matrix
that can be estimated using the data).

• Without normality assumption of the errors the parameter vector β̂ is approximately multivariate normally
distributed only in case of large samples.

The normal distribution of the parameters can be used to provide statistical inference for linear models:

• t-tests for location

• z-tests for location in case of large samples

• F -tests to compare variances
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t-test

Using t-tests we may test if a single coefficient β̂j differs significantly from a prespecified value. Usually we test βj = 0,
because, if we cannot reject the null hypothesis, we then may exclude the corresponding variable from the model.

Let sej denote the square root of the j-th diagonal element of σ̂2(X ′X)−1. We then have

t =
β̂j
sej
∼ tn−p.

The null hypothesis βj = 0 can be rejected if

|t| > tn−p(1− α/2).

We know that the t-distribution converges to the standard normal distribution as (n − p) → ∞. Hence, the t-test
coincide with the z-test for sufficiently large n (and fixed p).

Confidence and prediction intervals

If we want to construct confidence intervals for the response variable y we have to consider two sources of uncertainty:

• The true but unknown vector of regression coefficients β is approximated by β̂.

• The observed data scatter around the regression line (or hyperplane) with variance σ2.

The confidence interval for the expected value µ0 = E(y0) of a new observed value y0 at x0 with confidence level 1−α
is given by

ŷ0 ± tn−p(1− α/2)σ̂
√
x′0(X ′X)−1x0.

The prediction interval for a new observed value y0 at x0 with confidence level 1− α is given by

ŷ0 ± tn−p(1− α/2)σ̂
√

1 + x′0(X ′X)−1x0.

Categorical covariates: dummy coding

To model the influence of a c-categorical covariate x ∈ {1, . . . , c} using dummy coding we define c−1 dummy variables

xi1 =

{
1 xi = 2
0 else

. . . xi,c−1 =

{
1 xi = c
0 else

with i = 1, . . . , n and include them as explanatory variables in our regression model:

yi = β0 + β1xi1 + . . .+ βi,c−1xi,c−1 + . . .+ εi

To keep the coefficients identifiable the dummy variable of one category—here the first one—is not included in the
model. This category is called the reference category. The values of the regression estimates are then interpreted in
comparison to the omitted category.

Comparing different models

Two models are called nested if all variables of the smaller model are also included in the larger one. In this case, the
(mean squared) error of the smaller model using the training data set is always equal to or larger than the one of the
larger model.

Nested models can be compared using F -tests (cf. ANOVA): Is the error sum of squares (i.e., the variance) of the
larger model significantly smaller given the additional number of estimated parameters?

The two most important approaches are:
ANOVA type 1: nested models with variables in the same order as given in the model formula.
ANOVA type 2: compares the complete model with all models where one variable is excluded at a time.

Adjusted R2

The usage of R2 is suitable to only a limited extent comparing different models because it increases if new covariates
are included in the model.

To cope with this problem the so called adjusted R2 is used. Here, according to the number of parameters the R2

is adjusted in a way that it does not necessarily increase if additional covariates are included in the model:

R̄2 = 1− n− 1

n− p (1−R2).

Very popular; it is calculated per default by all statistical software packages, but it penalises new covariates too little.
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Information criterion AIC

The most used model selection criterion in the framework of maximum likelihood estimation is Akaike’s information
criterion (AIC). Generally, the AIC is defined by

AIC = −2 · l(β̂, σ̂2) + 2 |p|

where l(β̂, σ̂2) is the maximal value of the log-likelihood function, and p is the number of model parameters. The
derivation of the AIC is based on a Taylor expansion of the expected error and ignores constant terms of the likelihood
function. Hence, the AIC can only be used to compare nested models of the same model family ; its value is only
relative. Models with a smaller AIC value are preferred.

Bayesian information criterion BIC

The Bayesian information criterion BIC is defined by

BIC = −2 · l(β̂, σ̂2) + log(n) |p|,

Again, models with a smaller BIC value are preferred. The derivation of AIC and BIC is differently motivated. From
a practical point of view the main difference is that the BIC penalises complex models more than the AIC (because
log(n) > 2 for n ≤ 8).

4 Generalized linear models

Binomial regression models

Goal: Modelling and estimating the influence of covariates on the (conditional) probability

πi = P(yi = 1 |xi1, . . . , xik) = E(yi |xi1, . . . , xik)

in case yi = 1 given the covariate values xi1, . . . , xik. The response variables are assumed to be (conditionally)
independent.

Common solution approach for all usually used binomial regression models:
linking of the probability πi and the linear predictor ηi by

πi = h(ηi) = h(β0 + β1xi1 + . . .+ βkxik) .

• Response function: the function h is strictly increasing and maps onto the interval [0, 1], i.e., h(η) ∈ [0, 1],
∀η ∈ R. Especially, many cumulative distribution functions can be used as response functions.

• Link function: This is the inverse g = h−1 of the response function, i.e. ηi = g(πi).
Logit model

π =
exp(η)

1 + exp(η)
⇐⇒ log

π

1− π = η.

Probit model

π = Φ(η) ⇐⇒ Φ−1(π) = η.

complementary log-log model

π = 1− exp(− exp(η)) ⇐⇒ log(− log(1− π)) = η.

Interpretation of the logit model

Using the linear predictor
ηi = β0 + β1xi1 + . . .+ βkxik

the odds
πi

1− πi
=

P(yi = 1 |xi)
P(yi = 0 |xi)

are equal to the multiplicative model

P(yi = 1 |xi)
P(yi = 0 |xi)

= exp(β0) · exp(xi1β1) · . . . · exp(xikβk).
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If we increase xi1 by 1, i.e., xi1 + 1, the odds ratio is

P(yi = 1 |xi1 + 1, . . . )

P(yi = 0 |xi1 + 1, . . . )

/P(yi = 1 |xi1, . . . )
P(yi = 0 |xi1, . . . )

= exp(β1).

β1 > 0 : the odds P(yi = 1)/P(yi = 0) increase,

β1 < 0 : the odds P(yi = 1)/P(yi = 0) decrease,

β1 = 0 : the odds P(yi = 1)/P(yi = 0) stay the same.

Maximum likelihood estimation

Independently of the used link function the likelihood of the model cannot be solved for β in closed form. Hence, we
have to maximize the (log-)likelihood function numerically → Fisher Scoring. We can proof: as n→∞ the maximum
likelihood estimator (MLE) exits, it is a consistent estimator and asymptotically normally distributed. (It is sufficient
that the sample size n→∞.)

Significance of parameters

Testing
H0 : βj = 0 against H1 : βj 6= 0,

with βj an element of β, we again check if we can exclude the relevant variable from the model. As β̂ is only
asymptotically normally distributed, we always compare the test statistic tj with quantiles of the standard normal
distribution → “z-statistic”, “z-test”.

Linearly separable classes

A nasty feature of binomial regression (whether logit or probit or . . . ) is that the easiest case of linearly separable

classes leads to ‘infinite’ coefficients, i.e., the MLE β̂ = ±∞.
Hence, in all (reasonable implemented) statistical software packages the numerical maximization of the likelihood

function will be stopped after a maximal number of Fisher Scoring iterations and an additional warning will be given.
In this case, the estimated parameters will simply be ‘very large’.

In such a situation, e.g., Fisher’s discriminant analysis will yield a suitable model and, especially, the separating
hyper planes.

Poisson regression for count data

The response variables yi take values in {0, 1, 2, . . . } and are (conditional) independent given the covariates xi1, . . . , xik.
Log-linear Poisson model: yi |xi ∼ Po(λi) with

λi = exp(x′iβ) bzw. log λi = x′iβ.

Model with overdispersion:
E(yi |xi) = λi = exp(x′iβ), Var(yi |xi) = φλi

with overdispersion parameter φ. The usual Poisson distribution has only one parameter λ; λ is equal to the expectation
as well as to the variance of the distribution:

P{X = k} =
λke−λ

k!
, E(X) = Var(X) = λ .


