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ABSTRACT 

Knowledge of low streamflow statistics is necessary for effective water management in 

regions prone to extreme hydrologic events such as Iran. This study employs a data set of 23 

river flow time series from Sefidrood Drainage Basin, Iran, to examine regional hydrological 

drought based on the low flow index 7Q10. Hierarchical agglomerative cluster analysis was 

used to divide the 23 gauging stations into two homogeneous drought regions based on the 

similarity of the binary drought series. 7Q10 was determined using log-Pearson type-III and 

2-parameter log-normal distributions selected as the best regional probability distribution 

functions in homogeneous drought region 1 and 2, respectively. The 7Q10 was related to 

principal components of catchment characteristics in each homogeneous drought region 

separately using backward stepwise regression. The resulting regression equations exhibit a 

coefficient of determination of 69% and 89%, respectively. The regression parameters are 

linked to a size factor related to catchment area, an elevation factor which is independent of 

catchment area, and geological formation variables, which can therefore be interpreted as 

important controls of low flow generation processes in the study area. The equations 

developed here are expected to provide robust estimates of 7Q10 values for watersheds in 

areas of similar geomorphology, geology and climate. 

Key words | base flow index, cluster analysis, hydrological drought, principal component 

analysis, Sefidrood Drainage Basin 



INTRODUCTION 

Droughts have serious impacts on ecosystems and society. In 1998–2001 the extended 

drought affected more than 96% of the area of Iran by water-use restrictions, land subsidence 

and forest fires (Agrawala et al. 2001; Tabrizi et al. 2010). Hydrological drought occurs 

when river streamflow and water storages in aquifers, lakes or reservoirs fall below long-term 

mean levels and often affects large areas. Several factors, including lack of, or less frequent 

precipitation, poor water management and erosion, can cause or enhance hydrological 

drought (Dai 2011). Knowledge about hydrological droughts is important for a variety of 

tasks, e.g., water quality management, determination of minimum downstream flow 

requirement for hydropower and ecological needs, irrigation system design and wastewater 

treatment. Thus, prediction of hydrological drought indices and its regional variability is 

essential for a sustainable management of water resources. 

Hydrological droughts can be assessed in terms of streamflow quantity by means of 

low flow indices, such as flow quantiles or the lowest annual flow for a given duration (e.g., 

1, 7, 15 and 30 days). For seasonal climates, it has been recommended to calculate low flow 

indices for each season separately (Tallaksen et al. 1997; Laaha & Blöschl 2006b). A 

comprehensive review of the low flow characteristics and methodologies has been given by 

Smakhtin (2001). In streamflow drought studies, drought events can also be characterized by 

indices derived by the threshold level method (Tallaksen & van Lanen 2004), such as mean 

or distribution of drought durations and deficit volumes. The threshold level specifies some 

statistically optimal or purpose-related statistic of the drought variable and serves to divide 

the time series into deficit and surplus sections. 

The frequency and severity of hydrological drought is often defined on a watershed or 

river basin scale (NDMC 2005). When a regional assessment is sought, the low flow 

characteristics of sites where no streamflow measurements are available need to be estimated 

by means of regionalization. For this purpose, regression models are frequently used to relate 

low streamflow indices to physical catchment characteristics describing climatic, topological, 

geological and other properties of the catchment. The established relationships can 

subsequently be applied to predict low flows at ungauged sites in the entire region (Smakhtin 

2001). Regression models have become a standard tool for prediction of low flow statistics 

(e.g., 7Q10, the annual minimum 7-day average streamflow occurring once every 10 years on 

average) at ungauged sites and have been widely reported in the literature (e.g., Vogel & 

Kroll 1992; Dingman & Lawlor 1995; Brandes et al. 2005; Hejazi & Moglen 2007). 



In a heterogeneous area, the linear relationships of the stream flow index with 

catchment characteristics may vary between the regions, and regression equations based on 

hydrologically homogeneous subregions may be used with greater confidence to predict low 

flow (Nathan & McMahon 1990). This is often termed regional regression approach. Laaha 

& Blöschl (2006a, 2006b) assessed the value of catchment grouping for low flow 

regionalization and found a gain in performance depending on the grouping method. For the 

Austrian study area, classifications based on seasonality measures clearly outperformed the 

global regression model. Many studies, therefore, have investigated the delineation of a 

homogeneous region by using different sets of clustering variables, such as the statistical 

properties of drought events (Stahl & Demuth 1999; Fleig et al. 2011; Hannaford et al. 2011; 

Nosrati 2012) and the catchment characteristics including climatic, geomorphological and 

soil variables (Nathan & McMahon 1990; Rifai et al. 2000; Yu et al. 2002; Nosrati et al. 

2004; Laaha & Blöschl 2006a; Nosrati & Shahbazi 2008; Mamun et al. 2010). 

Iran lies approximately between 40°E and 64°E in longitude and 25°N and 40°N in 

latitude. The topographic features of Iran show two major mountain ranges, Alborz and 

Zagros, in the north and west of Iran, respectively, which surround the arid and semi-arid 

region of the central part of Iran. The mean annual precipitation of Iran varies between 1,800 

mm in the north to less than 100 mm in the central arid regions of the country. The 

precipitation coefficient of variation (CV) in stations varies between 20% and 75% from wet 

to dry regions of Iran. Surface water is not only a major source of drinking water in Iran, but 

also supplies public water utilities and accounts for almost all of the water supply to rural 

households. In Iran, the availability of water resources is critical during certain periods. River 

flows are strongly seasonal, characterized by low natural flow during summer. The high 

frequency of droughts makes it necessary to improve management strategies for water 

quantity and quality during dry periods. Therefore, understanding and predicting low flows is 

important for decision-makers involved in water resources management to account for the 

availability of water supply, the quality and quantity of water for human use, recreation, or 

irrigation purposes and wildlife conservation, especially in areas prone to extreme 

hydrological events. 

A regional low flow analysis provides a valuable framework for assembling the 

information necessary for understanding and predicting low flow and drought at ungauged 

sites, or at sites where data are incomplete. Establishing a regional low flow analysis provides 

a means of clarifying the link between low flow indices and catchment descriptors using 

regression techniques. In this study, information on the time patterns of drought occurrence is 



used as a basis for regionalization (Figure 1), similar to the approach Stahl & Demuth (1999) 

used for linking streamflow drought to the occurrence of atmospheric precipitation patterns. 

Catchments are regarded as similar if streamflow drought events show similar time patterns, 

thus occur simultaneously. A cluster analysis based on binary drought occurrence series is 

applied to find homogeneous drought groups or regions as a basis for regionalization, and the 

homogeneity by two different streamflow measures are checked. Further, regionalization is 

performed in homogeneous drought regions by principal component regression. Thus, the 

stepwise multiple regressions were used based on catchment characteristics and low flow to 

develop a reliable and statistical-based method for assessing the low flows in homogeneous 

drought regions in the Sefidrood Drainage Basin, Iran. 

 

MATERIALS AND METHODS 

Study area 

The study was performed in the Sefidrood Drainage Basin, located between 46° 27′ and 51° 

11′ east longitude and 34° 58′ and 37° 56′ north latitude, in northwestern Iran within the 

boundaries of Hamadan, Kordestan, Zanjan, East Azerbaijan, Ghazvin and Guilan Provinces 

(Figure 2). The Sefidrood River, the main river of the area, originates in the Alborz and 

Zagros Mountains and, after junction with some main tributaries, flows into the Sefidrood 

Dam Reservoir and finally into Sefidrood River estuary and the Caspian Sea. The study area 

is an important region not only for agricultural production, which directly depends on river 

water resources, but also for hydropower water supply and irrigation schemes in downstream 

areas. The dense population and an increasing demand for irrigation has led to a dramatic 

reduction of streamflows during the last decades. The investigations also show that 

sedimentation in the Sefidrood Dam Reservoir and the estuary of the Sefidrood River is a 

significant visual impact of land degradation by human activities (Azari Dehkordi et al. 

2003). In spite of this, a sufficient streamflow measurement network does not exist. Hence, a 

better understanding of quantity and regional variability of low flows could assist in the 

development of future flow restoration and management strategies on the study area. 

The drainage area of the Sefidrood Drainage Basin is 59,273 km
2
 which includes 

23,000 km
2
 (38.8% of total area) crop fields, 180 km

2
 (0.3% of total area) residential rural 

area, 34,193 km
2
 (57.7% of total area) natural rangelands and 1,900 km

2
 (3.2% of total area) 

natural forest. The drainage basin has variable lithological characteristics, with outcrops of 

Pre-Cambrian to Quaternary formations. The Sefidrood Drainage Basin has a mountainous 



topography, with a minimum and maximum height of 1,690 m and 4,407 m above the sea 

level in the Sefidrood Dam and Taleghan Mountains, respectively. The range of precipitation 

is 375 to 585 mm. Long-term series (1975–2005) mean annual precipitation (P) in the study 

area is strongly dependent on height (H). This relationship was explored by calculating linear 

regression based on mean annual precipitation and height data of 23 studied stations, yielding 

the following regression equation (coefficient of determination R
2
 = 0.88):  

P = 17.07 + 0.196H                                                                                                (1) 

Streamflow data 

Natural daily discharge series, from the archives of the Water Resources Research 

Organization, Iran were obtained for 23 stations in the region. Selected river gauges with a 

continuous 10-year record (1996–2006) were used in this study. The periods of missing data 

were filled by regression against the most highly correlated station. The record length is, in 

fact, rather short for long period assessments of water resources, but appears to be well suited 

to give an accurate characterization of the current low flow situation (Laaha & Blöschl 2005). 

Catchment characteristics 

For each catchment drainage area, perimeter, mean slope gradient, mean, maximum and 

minimum elevation, main stream length, summation of stream lengths, drainage density, 

length and width of rectangle-equivalent, circularity ratio, time of concentration, mean annual 

precipitation, urban and forest fraction per cent, and percentage of geological formations with 

high, medium, low and very low infiltration capacity were determined (Table 1). 

Homogeneous drought regions 

Binary daily series of drought and non-drought days were derived using streamflow 

deficiency indicator (DI) defined by a varying threshold level method. Streamflow drought 

was defined by the flow that is exceeded 90% of the time (the Q90 flow) as threshold level 

which has the advantage of removing the influence of streamflow seasonality on droughts. 

For a given day j, the daily-varying Q90 value is calculated by ranking all historical values on 

day j plus 15 days either side of day j. The window either side of the day of interest helps 

increase the size of the sample, and gives a smoother flow duration curve (FDC) than would 

result from just one value per year of day j (Hannaford et al. 2011). The choice of a percentile 

from the FDC as threshold level depends on hydrological regime. A range of thresholds from 

Q70 to Q95 is considered reasonable for perennial streams (Tallaksen & van Lanen 2004). 

Hannaford et al. (2011) and Stahl (2001) used Q90 as reasonable threshold level across 

Europe, whereas Fleig et al. (2011) found Q70 to be reasonable threshold level in Denmark 

and Great Britain. This approach is described in more detail in Stahl (2001), Tallaksen & van 



Lanen (2004) and Hannaford et al (2011). For a given day j, the DI was calculated by the 

following equation: 

DI(j) = 1 if Q(j) ≤ Q90(j) 

DI(j) = 0 if Q(j) > Q90(j)                                                                                  (2) 

Homogeneous drought regions were identified by cluster analysis (CA) on the binary 

drought series. Hierarchical agglomerative CA was performed on the data set by means of 

Ward’s method, using Euclidean distances as a measure of similarity. After calculating 

Euclidean distance as a measure of similarity, a linkage or amalgamation rule is needed to 

determine when two clusters are sufficiently similar to be linked together. The Ward’s 

method attempts to minimize the sum of squares of any two clusters that can be formed at 

each step. The spatial variability of selected river gauges based on the binary drought series 

was determined using the linkage distance, reported as Dlink/Dmax, which represents the 

quotient between the linkage distances (Dlink) for a particular case divided by the maximal 

linkage distance (Dmax). The quotient is then multiplied by 100 as a way to standardize the 

linkage distance represented on the x-axis of the dendrogram. 

In order to compare the hydrological characteristics within and between the identified 

homogenous drought regions, basic streamflow characteristics including the mean specific 

discharge (q, mean daily discharge divided by basin area) and the base flow index (BFI), 

were calculated for each station based on the daily streamflow series. 

Regional probability distribution functions 

The low flow analyses presented in this paper focus on the low flow characteristic 7Q10. This 

low flow characteristic has been chosen because of its relevance for numerous water 

resources management tasks in the study area, including water quality control, river ecology 

and environmental flow management (e.g., Smakhtin 2001; Dudley 2004; Eslamian et al. 

2010; Mamun et al. 2010), and assessment of hydrological change (Ryu et al. 2011). In order 

to determine the suitable regional probability distribution that optimally fits the minimum 7-

day low flow values in the homogeneous drought regions, first, the annual 7-day minimum 

discharge series for each gauge were computed. Then, ten probability distributions including 

the normal, 2-parameter log-normal (LN2), 3-parameter log-normal (LN3), gamma, Pearson 

type-III (PIII), log-Pearson type-III (LPIII), generalized logistic (GLOG), generalized 

extreme value (GEV), 3-parameter Weibull (W3), generalized Pareto (GPAR) distributions 

were evaluated to determine which distribution most appropriately fit the low flow data. The 

Kolmogorov–Smirnov test and ranking method were used to determine the best fitting 

distributions in the homogeneous drought regions using EasyFit 5.5 (MathWave 



Technologies 2010). There are a number of well-known methods including method of 

moments, maximum likelihood estimates, least squares estimates and method of L-moments 

which can be employed to estimate distribution parameters. For every supported distribution, 

EasyFit implements one of the parameter estimation methods that has the best results using 

the Kolmogorov–Smirnov test as goodness of fit (GOF) test and significance level (0.05) as 

optimality criteria. In order to determine the best distribution, a ranking method was used. In 

this method, ten scores ranging from 1 to 10 related to ten used distributions were assigned to 

each gauging data set such that 1 was given to the distribution which best fitted the data, 2 to 

the distribution which fitted the data in second order and so on. The summation of scores 

shows the suitability of distribution such that the best distribution got the lowest sum of 

scores. The selected regional probability distribution function in each homogeneous drought 

region was then used to calculate the annual 7-day minimum discharge series with a 10-year 

return period (7Q10). 

Regionalization of low flow 

The regionalization of low flow indices based on catchment characteristics covers both the 

regional analysis of low flows and the estimation of low flow characteristics at ungauged 

sites. We used regional principal component regression as the regionalization method where, 

for each homogeneous region resulting from the cluster analysis, a principal component 

analysis (PCA) is applied to transform catchment characteristics into uncorrelated variables. 

The most significant variables are subsequently used as predictor variables in a multiple 

regression model. Regression analysis based on component scores ensures that the 

independent variables are a parsimonious subset capturing the underlying dimensions of the 

full set of potential independent variables, and that they are uncorrelated as well. The method 

is therefore well suited to fit regressions in case of multicollinearity (Rogerson 2001). 

In our study, principal components with eigenvalues >1 were selected and 

subsequently subjected to a varimax rotation to minimize the number of variables that have 

high loadings on each component (Demuth 1993; Hill & Lewicki 2007). In addition, 

communalities of every single variable for component model were calculated to estimate the 

portion of variance in each variable explained by the rotated principal components. 

Component scores for each catchment in the homogenous regions were calculated and these 

components were used as independent variables in stepwise multivariate regression analyses 

to develop the best equations (models) able to predict 7Q10. The regression statistics 

including adjusted R
2
 and the smallest p-value of the F-test were used to provide the best 

subset selection of predictors by examining all possible regressions. Multicollinearity among 



the model predictors was evaluated by the variance inflation factor (VIF), using 10 as a cut-

off value. All statistical analyses were performed using STATISTICA V. 8.0 (StatSoft 2008). 

 

RESULTS AND DISCUSSION 

Homogeneous drought regions 

CA was used to separate the 23 stations into groups with similar binary daily drought series. 

It yielded a dendrogram (Figure 3(a)) grouping all stations of the study area into two 

statistically significant clusters at (Dlink/Dmax) × 100 < 50. The graph of amalgamation 

schedule represents a line graph of the linkage distances at successive clustering steps. This 

graph can help in the selection of a cut-off for the dendrogram and, consequently, it helps in 

the determination of the optimal number of clusters (Hill & Lewicki 2007). The number of 

clusters was chosen because the graph of amalgamation schedule shows a sudden increase in 

Dlink when combining the last two clusters (i.e., step 22; Figure 3(b)). Thirteen and ten 

stations were classified in cluster 1and cluster 2, respectively (Figures 2 and 3(a)). 

Median, quartiles and range values of q and BFI for the two clusters were determined 

(Figure 4). The results of a t-test showed that q (p < 0.001) and BFI (p = 0.03) were 

significantly different between the regions. The high q value within cluster 2 was caused by 

stations with outstandingly high annual precipitation (mean annual precipitation of 624 mm, 

which is 300 mm greater than the average for cluster 1). The higher BFI values in cluster 2 

may be related to the high fraction of forests in all catchments in cluster 2. These results 

conducted by Fleig et al. (2011) confirmed that drought regions (clusters) provide useful 

hydrological differentiation by the regional streamflow characteristics (q and BFI) in 

northwestern Europe. 

It is interesting that the two clusters form contiguous regions and seem to represent 

similar climate, geology and land use conditions that have been shown to have significant 

influence on hydrological drought (e.g., Talleksen & Van Lanen 2004). They are physically 

divided east/west in upland/coastal regions, respectively (Figure 2). Cluster 1 describes the 

regions at higher altitudes up to 4,312 m.a.s.l, where low flow conditions are affected by 

snow storage and freezing. This gives rise to a mixed winter and summer low flow regime. 

Winter low flows are directly caused by freezing processes, as is typical for alpine climates. 

In addition, summer low flows occur, but they are less pronounced than in coastal areas, as 

they are fed by snow melt and groundwater sources. Cluster 2, however, contains forested, 

mountainous regions of lower altitude that are affected by coastal climate. Here the stations 

exhibit considerably less seasonal low flow regimes, but are subject to multiannual droughts. 



The higher percentage of geological formations with medium and high infiltration capacity in 

cluster 2 increases the base flow and consequently decreases the short-term rainfall 

deficiency effects on low streamflow, with the base flow providing an effective buffer during 

dry spells. When rainfall deficits extend over longer timescales, base flow-dominated 

catchments are more vulnerable than more responsive catchments. This is because the 

prolonged reduced rainfall restricts groundwater replenishment, meaning that once rainfall 

does return, it is not sufficient to stimulate a recovery in river flows because groundwater 

levels must be restored before base flow contributions to river flow can recommence. 

Regional probability distribution functions 

For each drought region data series, the ranking method was performed to identify the most 

appropriate regional probability distribution function. The obtained scores for the selected 

distributions are shown in Table 2. The sum of scores for each distribution showed that log-

Pearson type-III (LPIII) got the lowest value (40) for drought region (cluster) 1 and therefore 

was chosen as the representative distribution in this region. Pearson type-III and normal 

distributions got the highest values (90 and 89) and represent the worst fitting distributions 

(Table 2). For drought cluster 2, the 2-parameter log-normal (LN2) distribution was most 

often selected (got the lowest scores) and is regarded as the best fitting regional probability 

distribution function for drought cluster 2. The 3-parameter log-normal and Pearson type-III 

distributions got the highest sum of scores and fit worst (Table 2). For the whole study area, 

LN2 and LPIII with scores 102 and 103, respectively, were selected as the best regional 

distributions whereas PIII got the highest sum of scores and appears as the worst fitting 

distribution (Table 2). 

Overall, LN2 and LPIII perform best, and it is interesting to compare this result with 

results of other studies conducted in the same, or in hydroclimatologically similar areas. For 

Atrak basin in the northeast of Iran, Nosrati et al. (2002) recommended LPIII and LN2 

distributions for 7Q10 frequency analysis and concluded that the LPIII is the best distribution 

for short duration low flows such as 7-day low flows. Modarres (2008) found GLOG and 

GEV as parent distributions for regional low flow frequency analysis in eastern and western 

regions of the north of Iran, respectively. Modarres & Sarhadi (2010) selected LN3 as a 

regional distribution function for the extreme hydrologic drought periods in the southeastern 

arid region of Iran, while LN3 consistently ranks among the worst performing distributions in 

this study. This difference can be caused by variations in lithology and climate parameters. 

Durrans & Tomic (1996) concluded that the LPIII is a suitable candidate for low flow 

modelling in 128 gauged stations in the USA. Chen et al. (2006) recommend the LN3 



distribution function for the south of China for regional low flow frequency analysis. Tasker 

(1987) recommended W3 and LPIII distributions to describe the frequency of 7-day annual 

low flow series for 20 rivers in Virginia. Vogel & Kroll (1989) recommended LN2, LN3, 

LPIII and W3 distributions for 23 sites in Massachusetts. 

LN2 and LPIII were used to calculate the 7Q10 in homogeneous drought clusters 1 

and 2, respectively. Median, quartiles and range values of 7Q10 for the two clusters were 

determined (Figure 5). The results of a t-test showed that 7Q10 (p < 0.0001) was significantly 

different between the regions. 

Regionalization of hydrological drought 

For each of the two drought regions resulting from CA, a separate principal component 

analysis was performed on the normalized data sets to identify the components replacing the 

most important variables. In a subsequent step, the principal components were subjected to 

varimax rotation in order to maximize correlations with catchment characteristics, to increase 

their interpretability.The results showed that for cluster 1, the first four principal components 

(PCs) with eigenvalues >1 accounted for 85% of variability in catchment characteristics 

(Table 3). Communalities for catchment characteristics indicate the four PCs explained >90% 

of variance in drainage area, perimeter, length of rectangle-equivalent, maximum and mean 

elevation, main stream length, summation of stream lengths, time of concentration, 

percentage of geological formations with low and very low infiltration capacity. The four PCs 

explained >80% of variance in minimum elevation, mean slope, mean annual precipitation 

and percentage of geological formations with high infiltration. The four PCs also explained 

>70% of variance in width of rectangle-equivalent, circularity ratio, drainage density and 

urban fraction per cent, and <30% in percentage of geological formations with medium 

infiltration capacity (Table 3). A high communality estimate suggests that a high portion of 

variance was explained by the component; therefore, it would get higher preference over a 

low communality estimate. Thus, percentage of geological formations with medium 

infiltration capacity
 
was the least important attribute due to the lowest communality estimates 

in cluster 1, since it is not highly correlated with the four components. 

For the data set of cluster 1, PC1 explained the largest proportion (50.5%) of total 

variance. PC1 had a strong positive loading (>0.75) on catchment drainage area, perimeter, 

circularity ratio, length and width of rectangle-equivalent, main stream length, summation of 

stream lengths, and time of concentration, a strong negative loading on mean annual 

precipitation and a moderate positive loading on mean slope and thus may be considered to 

represent a magnitude effect or size factor related to catchment area (Table 3). The negative 



loading on mean annual precipitation for PC1 can be interpreted as secondary effects due to 

their correlation with catchment area. PC2 explained 14.3% of the total variance, and was 

characterized by high positive loading on percentage of geological formations with high 

infiltration capacity and high negative loadings on minimum elevation and percentage of 

geological formations with low infiltration capacity (Table 3). As the proportion of areas with 

high infiltration capacity decreases with catchment altitude, the relationship with minimum 

elevation constitutes a secondary effect, and because of these intercorrelations we interpret 

PC2 as a geology factor. PC3, explaining 13.1% of total variance, has strong positive 

loadings on maximum and mean elevation, and moderate negative loadings on drainage 

density and the fraction of urban areas and thus may be considered to represent the effect of 

elevation which is independent of catchment area. Again, we interpret the moderate loadings 

on urban fraction as a secondary effect, due to lower proportion of urban areas in higher 

altitudes. PC4, explaining 7.2% of total variance, was characterized by a high negative 

loading on percentage of geological formations with very low infiltration capacity which 

suggests that it may represent the importance of this geological formation. 

For cluster 2, four components with eigenvalues >1 were identified. A summary of 

varimax rotated component loadings on the catchments’ descriptive variables is given in 

Table 3. These four components explained >89% of variability in catchment characteristics in 

cluster 2. From the communalities presented in Table 3 it becomes clear that drainage 

density, urban fraction per cent and percentage of geological formations with medium 

infiltration capacity are the least important catchment characteristics. Investigating these 

characteristics in the catchments showed that urban areas have been established in geological 

formations with medium infiltration capacity, so these factors are obviously correlated. The 

same is true for drainage density which shows a similar spatial pattern as geological 

formations with medium infiltration capacity. These variables have only minor effects on low 

flows. 

For the data set of cluster 2, PC1 explained 48.4% of total variance. PC1 was 

characterized by high positive loadings on catchment drainage area, perimeter, circularity 

ratio, length and width of rectangle-equivalent, main stream length, summation of stream 

lengths and time of concentration (Table 3), and thus may be considered, again, to represent a 

magnitude effect or size factor related to catchment area. There are further a negative loading 

on mean annual precipitation and a moderate positive loading on urban fraction and 

percentage of geological formations with medium infiltration capacity which we interpret as 

their correlation with catchment area and land use. PC2 was characterized by high positive 



loading on mean slope, drainage density and forest fraction per cent, and moderate negative 

loadings on minimum and mean elevation (Table 3). As the proportion of areas with forest 

fraction per cent decreases with catchment altitude, PC2 may be considered to represent land 

use. PC3 was characterized by a high positive loading on maximum elevation and a high 

negative loading on percentage of geological formations with very low infiltration capacity 

and thus may be considered to represent the elevation factor which is independent of 

catchment area. We interpret the high negative loading on percentage of geological 

formations with very low infiltration capacity as a secondary effect, due to lower proportion 

of formations with very low infiltration capacity in higher altitudes. PC4 was characterized 

by a high positive loading on percentage of geological formations with low infiltration 

capacity and a moderate negative loading on percentage of geological formations with high 

infiltration capacity, which suggests that it may represent the importance of this geological 

formation. 

In a subsequent step of the regionalization procedure, component scores were 

calculated for each cluster separately, using the resulting component score coefficient matrix. 

The resulting components were used as independent variables in stepwise multivariate 

regression analyses. The analysis was, again, performed for the two clusters separately. A 

summary of stepwise multivariate regression models examining the extent to which the 

extracted components explain the 7Q10 for each drought region (cluster) in the study area is 

given in Table 4. 

The analysis of the cluster 1 data set showed that PC1 is the most significant predictor 

of 7Q10 low flow (Table 4). The equation fitted through multiple regression using this 

variable was able to explain 69% of the 7Q10 variation of the studied catchments. Mean 

absolute error (MAE) and root mean squared error (RMSE) of the model were 0.21 and 0.26, 

respectively. The observed and predicted values for the 7Q10 values of cluster 1 are plotted 

in Figure 6(a). Therefore, 7Q10 is influenced by size factor related to catchment area. 

Alternative sets of predictors were also evaluated for cluster 2 data sets. For these data 

sets, PC1, PC3 and PC4 were selected as 7Q10 predictor explaining 89% of the 7Q10 

variation (Table 4) of the studied catchments. MAE and RMSE of the model were 0.71 and 

0.85, respectively. The predicted values for the 7Q10 are plotted against the observed values 

for the 7Q10 for cluster 2 in Figure 6(b). The t statistics showed that PC1 is the most 

important factor in the model (Table 4). Therefore, 7Q10 is influenced by a size factor related 

to catchment area, an elevation factor which is independent of catchment area, and geological 

formation variables. Based on the coefficient of regression model and precipitation factor 



loadings in PC1, the negative relationship between 7Q10 and precipitation is dissimilar to 

other studies that showed that magnitude effect or size factor related to catchment area can 

control the low flow discharge and has a dominant effect compared with the precipitation. 

Since the annual precipitation has been related to a 7-day low flow, this anomalous negative 

relationship may be subject to a seasonal effect. 

The 7Q10 was positively related to the proportion of geological formations with low 

infiltration capacity as well as negatively linked to the proportion of geological formations 

with high infiltration capacity in PC4. There is a different source of low flow losses which 

operates in karst regions in the study area. In our model, it is expected that part of the 

variance that cannot be explained by the independent variables and their interactions or 

reverse relationship is due to the fact that differences between catchments are not entirely 

accounted for by the characteristics that were included in the statistical analysis. 

This is in agreement with findings from many previous studies of low flow 

regionalization that have demonstrated a significant correlation between the low flow and 

catchment characteristics. Nosrati & Shahbazi (2008) examined the regional low flow of 16 

stations of the Atrak River (northeastern Iran) based on 17 catchment characteristics and 

found that drainage area, slope and percentage of permeable geological formations accounted 

for 92% of the spatial variability of the 7Q10 flows in the hybrid multiple regression analysis. 

Modarres (2008), in north Iran, found that drainage area is the main factor affecting low flow. 

Eslamian et al. (2010) showed that size and geographic position are the main factors affecting 

7Q10 in Karkhe Basin, Iran. Vogel & Kroll (1990) determined that drainage area, mean 

annual precipitation and basin relief were significant parameters. Vogel & Kroll (1992) also 

found close to direct proportionality of 7Q10 with a watershed area in Massachusetts. 

Brandes et al. (2005) included the recession constant (that depended on drainage density, 

landscape slope, bedrock geology and soil infiltration rate) as a model parameter for 7Q10 

estimation equations. Hejazi & Moglen (2007) regionalized low flow for six urbanized 

watersheds in the Maryland Piedmont region, resulting in a regression that included 

precipitation, temperature, imperviousness in the watershed and area of the watershed. Rifai 

et al. (2000) created regression equations for the 7Q10 flow for Texas based on 

meteorological and physiographic data from 63 gauged streams. The regression parameters 

included drainage area, channel slope, predominant hydrologic soil group and the 

precipitation. Using data from 60 gauging stations, Flynn (2003) used total drainage area, 

mean summer precipitation and average mean annual temperature to predict 7Q10 flows for 

New Hampshire streams. Dudley (2004) used 26 gauging stations on rural rivers in Maine to 



develop regression equations. 7Q10 regression equation used drainage area and fraction of 

the drainage basin underlain by sand and gravel aquifers. 

 

CONCLUSION 

In this case study, we examined regional hydrological drought based on the low flow index 

7Q10 for the Sefidrood Drainage Basin, Iran. Analyses were based on a data set of 23 daily 

discharge time series measured over a 10-year standard observation period. The paper used 

state-of-the-art methods in a novel application/region-drought in Iran. Cluster analysis 

techniques were applied based on binary drought occurrence series, using the flow quantile 

Q90 as threshold level, to find homogeneous drought regions as a basis for regionalization. 

The analysis yielded two clusters which show similar time patterns of drought events, differ 

significantly in terms of mean flow and the base flow index, and form contiguous regions in 

space. For each gauge, the low flow index 7Q10 was determined using log-Pearson type-III 

(LPIII) and 2-parameter log-normal (LN2) distribution, which were selected in a comparative 

analysis as the best regional probability distribution function in homogeneous drought 

regions 1 and 2, respectively. For regionalization of 7Q10, principal component analysis 

aided in extraction and identification of the most important catchment characteristics. The 

resulting principal components were related to 7Q10 low flows in each homogeneous drought 

region separately, using backward stepwise regression. The thus-obtained regression 

equations exhibit a coefficient of determination of 69% and 89%, respectively. The 

regression parameters are linked to a size factor related to catchment area, an elevation factor 

which is independent of catchment area, and geological formation variables. All component 

loadings in sign and magnitude are well interpretable on hydrological grounds, and can 

therefore be interpreted as important controls of low flow generation processes in the 

Sefidrood Drainage Basin. 

Taken together, the regional equations developed by principal component regression 

are expected to provide estimates of hydrological drought sensitivity, and 7Q10 values for 

watersheds in areas of similar geomorphology, geology and climate. However, they have not 

yet been tested and thus require further investigation as to their practical limits. It would also 

be interesting to extend the analysis to a regionalization of the entire low flow distribution, in 

a regional frequency analysis framework. These questions will be treated in a subsequent 

study, and results will be reported in future publications. 
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Figure 1 | The integrated approach for establishing the regional low flow analysis 



 

Figure 2 | Location map of the Sefidrood Drainage Basin and streamflow gauging stations in 

homogenous drought regions. 



 Figure 3 | Dendrogram showing clustering of streamflow gauging stations according to (a) 

binary drought series and (b) graph of amalgamation schedule. 



 Figure 4 | Box plots of mean specific discharge and base flow index for all stations within 

the two homogenous drought regions. 



 Figure 5 | Box plots of 7Q10 for all stations within the two homogenous drought regions. 



 Figure 6 | Scatterplot of observed vs. predicted data points for low flow (7Q10): (a) 

homogenous drought cluster 1 and (b) homogenous drought cluster 2. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 | List of catchment characteristics used in this study 

Catchment 

characteristic 

Source data /method Unit Description 

Drainage area 30 m digital elevation 

model (DEM) 

km
2
 – 

Drainage perimeter 30 m digital elevation 

model (DEM) 

km – 

Mean slope gradient 30 m digital elevation 

model (DEM) 

% – 

Mean, maximum and 

minimum elevation 

30 m digital elevation 

model (DEM) 

m – 

Main stream length 1:25,000-scale 

topographic map 

km The length of the longest channel 

present in the catchment 

Summation of stream 1:25,000-scale km Summation of all streams lengths 



lengths topographic map 

Drainage density 1:25,000-scale 

topographic map 

km km
-

2
 

The ratio of the total length of all 

streams and area of the catchment 

Length and width of 

rectangle-equivalent 

Based on Roche 

definition (Mahdavi 

2007) 

km According to Roche a catchment 

can be assumed to represent a 

rectangular shape with same area, 

which longitudinally coincides with 

that of the principal river axes 

called rectangle-equivalent 

Circularity ratio Fc = 0.282M A
-0.5 

where 

M and A are the 

perimeter (km) and area 

(km
2
) of the catchment, 

respectively 

– The shape factor of the catchments 

was described by circularity ratio 

Time of concentration Calculated by Kirpich 

equation: tc = 

0.949(L
3
/H)

0.385
 in which 

L is the length of the 

channel (km) and H is 

the difference in 

elevation between the 

points defining the upper 

and lower ends of the 

channel (m) 

hr The time required for runoff to 

travel from the hydraulically most 

distant point in the watershed to the 

outlet (McCuen 1998) 

Mean annual 

precipitation 

Isohyetal method 

(McCuen 1998) 

mm The area within each pair of 

adjacent isohyets used to weight the 

average annual precipitation 

associated with the adjacent 

isohyets 

Urban and forest fraction 1:40,000-scale aerial 

photographs and 

1:25,000-scale 

topographic map 

%  



Geological formations 

with high, medium, 

low and very low 

infiltration capacity 

1:250,000 scale 

geological map 

% Geological formations were 

classified based on hydraulic 

conductivity and mean annual 

specific discharge 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 | Sum of computed ranks for the selected distributions in the two homogenous 

clusters and overall study area 

Homogenous 

region 

Probability distribution function 

Gamma GEV GLOG GPAR LPIII LN2 LN3 Normal PIII W3 

Cluster 1 68 55 63 69 40 72 85 89 90 84 

Cluster 2 66 56 51 51 63 30 72 37 73 51 

Overall study 

area 
134 111 114 120 103 102 157 126 163 135 

LPIII, log-Pearson type-III; GEV, generalized extreme value; GLOG, generalized logistic; 

GPAR, generalized Pareto; PIII, Pearson type-III; LN2, 2-parameter log-normal; LN3, 3-

parameter log-normal; W3, 3-parameter Weibull 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 | Proportion of variance using varimax rotation and communality estimates of 

catchment characteristics for two homogenous drought regions 

Variables PC1 PC2 PC3 PC4 
Communality 

estimates 

Cluster 1 (four significant principal components) 

Drainage area (km
2
) 0.97 0.01 0.19 0.11 0.98 

Drainage perimeter (km) 0.97 0.09 0.14 0.16 1.00 

Circularity ratio 0.75 0.26 −0.15 0.20 0.70 

Length of rectangle-equivalent 

(km) 
0.95 0.04 0.14 0.14 0.95 

Width of rectangle-equivalent 

(km) 
0.83 0.07 0.26 0.11 0.78 

Maximum elevation (m) 0.47 0.36 0.75 0.22 0.95 

Minimum elevation (m) −0.44 −0.81 −0.15 −0.03 0.87 



Mean elevation (m) 0.23 −0.29 0.85 0.24 0.92 

Mean slope (%) 0.58 0.41 0.40 0.38 0.81 

Summation of stream lengths 

(km) 
0.97 0.02 0.16 0.12 0.97 

Main stream length (km) 0.95 0.16 0.18 0.13 0.98 

Drainage density (km km
-2

) −0.15 −0.36 −0.71 0.34 0.77 

Time of concentration (hr) 0.96 0.12 0.03 −0.20 0.97 

Urban fraction (%) 0.27 0.35 −0.67 0.31 0.74 

Very low ICGF (%) −0.27 0.00 0.00 −0.91 0.91 

Low ICGF (%) 0.23 −0.85 0.14 0.33 0.91 

Medium ICGF (%) −0.38 0.03 −0.26 0.29 0.29 

High ICGF (%) 0.12 0.88 −0.05 0.21 0.83 

Mean annual precipitation (mm) −0.76 −0.04 0.33 −0.38 0.83 

Eigenvalue 9.6 2.7 2.5 1.4  

% Total variance 50.5 14.3 13.1 7.2  

Cumulative % variance 50.5 64.8 77.8 85.0  

Cluster 2 (four significant principal components) 

Drainage area (km
2
) 0.97 0.02 −0.03 0.09 0.95 

Drainage perimeter (km) 0.95 0.02 0.04 0.23 0.96 

Circularity ratio 0.72 −0.08 0.25 0.08 0.92 

Length of rectangle-equivalent 

(km) 
0.95 0.02 0.04 0.24 0.96 

Width of rectangle-equivalent 

(km) 
0.99 0.06 −0.05 0.04 0.99 

Maximum elevation (m) 0.26 −0.37 0.82 0.28 0.94 

Minimum elevation (m) −0.45 −0.65 0.39 −0.40 0.95 

Mean elevation (m) -0.12 −0.65 0.03 −0.09 0.98 

Mean slope (%) 0.17 0.91 0.11 0.26 0.95 

Summation of stream lengths 

(km) 
0.97 0.02 −0.03 0.09 0.95 

Main stream length (km) 0.98 0.02 0.01 0.18 0.99 

Drainage density (km km
-2

) −0.02 0.81 0.09 0.08 0.67 

Time of concentration (hr) 0.98 0.01 −0.09 0.16 0.99 



Urban fraction (%) 0.58 0.14 0.28 −0.05 0.43 

Forest fraction (%) −0.32 0.83 −0.41 −0.10 0.96 

Very low ICGF
a
 (%) 0.01 −0.20 −0.87 −0.05 0.81 

Low ICGF (%) 0.08 0.33 0.16 0.89 0.93 

Medium ICGF (%) 0.70 −0.17 −0.32 −0.24 0.68 

High ICGF (%) −0.40 −0.07 0.41 −0.64 0.95 

Mean annual precipitation (mm) −0.75 0.33 −0.01 −0.29 0.93 

Eigenvalue 9.7 4.4 2.5 1.3  

% Total variance 48.4 21.9 12.6 6.6  

Cumulative % variance 48.4 70.4 82.9 89.5  

ICGF, infiltration capacity of geological formation 

Bold and italic values indicate strong (>0.75) and moderate (0.75–0.50) loadings, 

respectively 

 

 



Table 4 | Best set of prediction variables for low flow (7Q10) defined by stepwise multiple regression analysis of the two homogenous regions 

Homogenous 

region 

Regression statistics Regression parameters 

R
2 

Adjusted 

R
2 

F p-value SEE 
Dependent 

variable 
Predictor B 

t-

value 

Partial 

Correlation 
VIF 

Cluster 1 0.69 0.66 23 <0.001 0.27 7Q10 Intercept 0.40 3.9   

       PC1 0.39 3.4 0.83 1.0 

            

Cluster 2 0.89 0.84 17 <0.001 1.21 7Q10 Intercept 3.09 8.1   

       PC1 2.10 5.1 0.91 1.0 

       PC4 1.44 3.8 0.82 1.0 

       PC3 1.19 3.0 0.77 1.0 

SEE, standard error of estimate; B, raw regression coefficient; VIF, variance inflation factor 

 

 

 


