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Motivation

Spectral estimation in

• geophysics

• signal processing

• medicine → analysis of heart rate variability (HRV) as noninvasive method

Data Model with Additive Outliers (AO)

The process {yt : t ∈ ZZ} is said to have additive outliers (AO) if it is defined by

yt = xt + vt

where xt is an ARMA(p, q) process and the vt are independent, identically distributed
(iid) with Fv = (1 − ε)δ0 + εH where δ0 is the degenerated distribution having all its
mass at the origin and H is a heavy-tailed symmetric distribution with mean 0 and
variance σ2

H .

Robust Filter-cleaner

Let {yk, k = 1, . . . , N} denote the observed values of a second-order stationary process
with mean zero. The filter-cleaner algorithm (cf. Martin and Thomson, 1982) relies
on the AR(p) approximation of the underlying process xt, represented in the following
state-space form with t = p + 1, . . . , N :

X t = ΦX t−1 + U t ,

where

X t = (xt, xt−1, . . . , xt−p+1)
> ,

U t = (εt, 0, . . . , 0)> ,

with Φ =




φ1,p · · · φp−1,p φp,p

1 · · · 0 0
... . . . ... ...
0 · · · 1 0


 , cov(U t) = Q =




σ2
ε,p 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0


 and

yt = xt + vt = (1, 0, . . . , 0)X t + vt with var(vt) = σ2
0 .

The algorithm computes robust estimates X̂ t of the unobservable X t according to the
following recursion:

X̂ t = ΦX̂ t−1 +
mt

s2
t

st ψ

(
yt − ŷt−1

t

st

)

with mt being the first column of M t, which is computed recursively as

M t+1 = ΦP tΦ
> + Q

P t = M t − w

(
yt − ŷt−1

t

st

)
mtm

>
t

s2
t

.

The weight function w(r) = ψ(r)/r where ψ stands for some robustifying function.
The scale st is defined by s2

t = m11,t and ŷt−1
t denotes a robust one-step prediction of

yt based on Y t−1 = (y1, . . . , yt−1)
>, and is given by

ŷt−1
t = (ΦX̂ t−1)1 .

Finally, the cleaned process at time t results in

x̂t = (X̂ t)1 .

To use the filter-cleaner algorithm we need robust estimates φ̂p and σ̂2
ε,p = s2

ε,p of

φp = (φ1,p, . . . , φp,p)
> and σ2

ε,p.

Different approaches to obtain initial estimates lead to similar results, namely

• using bounded-influence autoregression (BIAR) via iteratively reweighted least
squares (IWLS) (cf. Martin and Thomson, 1982)

• a highly robust autocovariance function estimator (cf. Ma and Genton, 2000) and
the Yule-Walker equations

• robust autoregression using LTS- and LMS-regression

Robust Spectral Estimation via WOSA

WOSA stands for Welch’s Overlapped Segment Averaging.
Let yt, t = 1, . . . , N , be the observed process.

• Split the process into NB overlapping blocks of length NS.

• Calculate direct spectral estimates for different blocks of NS contiguous data values

Ŝ
(d)
l (f ) = ∆t

∣∣∣∣∣∣

NS∑

t=1

htyt+l−1e
−i2πft∆t

∣∣∣∣∣∣

2

, l = 1 (n) N − NS + 1,

where h1, . . . , hNS
is a data taper.

• Then the WOSA spectral estimator is defined by

Ŝ(WOSA)(f ) =
1

NB

NB−1∑

j=0

Ŝ
(d)
jn+1(f ) .

A robust spectral estimator can be obtained by replacing the sample mean by an M-
estimator (cf. Chave et al., 1987), i.e.,

min
θ

∑
ρ

(
xi − θ

s

)
, or, equivalently,

∑
ψ

(
xi − θ

s

)
= 0 ,

where xi corresponds to Ŝ
(d)
jn+1(f ) and ψ(r) = ρ′(r). The solution θ̂ is called M-estimate.

Because outlier contamination can only result in a spectrum that is biased upwards, a
special asymmetric ρ-function is used. It is defined by

ψ(r) = r exp(− exp(β(r − β))) .

The solution is calculated using iteratively reweighted least squares (IWLS) with proper
initial values, e.g., the sample median and a corrected version of the median absolute
deviation (MAD).

Simulated Data

Consider the artificial process with AO composed of the following three autoregressive
processes (Kleiner et al., 1979):

uk = 0.975uk−1 + εk ,

wk = 0.95wk−1 − 0.9wk−2 + ηk ,

zk = 0.33zk−1 − 0.9zk−2 + ζk ,

with εk, ηk, ζk ∼ N(0, 1). uk, wk and zk are standardized and

yk =
√

75uk + wk + zk , k = 1, . . . , n ,

is computed. yk is standardized again. Additionally, noise from
0.9δ0 + 0.1N(0, 100) is added.
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Spectrum Estimation Using a Robust Filter−cleaner
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Summary & Discussion

• Simulated process

– spectral estimate using the robust filter-cleaner approach: good

– robust WOSA spectral estimate: poor

• Analysis of HRV data

– spectral estimate using the robust filter-cleaner approach: good

– robust WOSA spectral estimate: good

Heart Rate Variability Data

• Real data: heart rate variability (HRV) recordings
(tachogram of 1321 successive heart beats)

• provided by J. Pumprla and K. Howorka,
Department of Biomedical Engineering and Physics, General Hospital of Vienna
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