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Motivation

Analysis of Heart Rate Variability (HRV) as a non-invasive method for

diabetic patients



Second-order Stationarity

Consider a time series {xt : t ∈ ZZ} and assume that it satisfies the hy-

pothesis of second-order stationarity:

(i) E(x2
t ) < ∞ ∀ t ∈ ZZ

(ii) E(xt) = µ = constant ∀ t ∈ ZZ

(iii) cov(xt+h, xt) = γ(h) ∀ t, h ∈ ZZ

where γ(h) is the autocovariance function of xt at lag h.



Autocovariance Function

The classical estimator for the autocovariance function, based on the

method of moments, on a sample x = (x1, . . . , xn)>, is

γ̂M(h, x) =
1

n− h

n−h∑

i=1

(xi+h − x̄)(xi − x̄) 0 ≤ h ≤ n− 1 (1)

where

x̄ =
1

n

n∑

i=1

xi .



ARMA(p, q) Process

A univariate time series xt, t = 0,±1,±2, . . . , is said to be an ARMA(p, q)

process if xt is stationary and

xt = φ1xt−1 + . . . + φpxt−p + wt + θ1wt−1 + . . . + θqwt−q , (2)

with φp 6= 0 and θq 6= 0. The innovation process wt in (2) is a white noise

process with σ2
w > 0.



Innovational Outliers (IO)

The ARMA(p, q) process {xt : t ∈ ZZ} is said to have innovational outliers

(IO) if the innovations wt have a heavy-tailed distribution, for instance

an ε-contaminated normal distribution

CN(ε, σ1, σ2) = (1− ε)N(0, σ2
1) + εN(0, σ2

2) (3)

where N(0, σ2) denotes the normal distribution with mean zero and vari-

ance σ2 and σ2
1 ¿ σ2

2 and ε is small.



Additive Outliers (AO)

The process {xt : t ∈ ZZ} is said to have additive outliers (AO) if it is

defined by

xt = vt + wt (4)

where vt is an ARMA(p, q) process and the wt are independent identically

distributed (iid) with common distribution Fw = (1− ε)δ0 + εH where δ0
is the degenerate distribution having all its mass at the origin and H is a

heavy-tailed symmetric distribution with mean 0 and variance σ2. Hence,

the ARMA(p, q) process vt is observed with probability 1− ε whereas the

ARMA(p, q) process plus an error wt is observed with probability ε. We

shall also assume that vt and wt are independent.



Spectral Representation Theorem

Any second-order stationary process xt has the spectral representation

xt =
∫ 1/2

−1/2
exp(−2πitf) dz(f) (5)

where z(f), −1/2 ≤ f ≤ 1/2, has stationary uncorrelated increments. The

process z(f) defines a monotone nondecreasing function F (f) through

F (f) = E|Z(f)|2, dF (f) = E|dZ(f)|2, F (−1/2) = 0, F (1/2) = σ2 = γ(0) .

The function F (f) is called the spectral distribution function. If the

autocovariance function is absolutely summable, i.e.,
∑∞

h=−∞ |γ(h)| < ∞,

the spectral distribution function is absolutely continuous with dF (f) =

S(f) df . S(f) is called the spectral density function of the process xt.

Other commonly used terms for S(f) are spectral density , spectrum or

power spectrum.



Definition of the Power Spectrum

It follows that any process with autocovariance function γ(h) satisfying

∞∑

h=−∞
|γ(h)| < ∞ (6)

has the representation

γ(h) =
∫ 1/2

−1/2
exp(2πihf)S(f) df, h ∈ ZZ . (7)

Thus the autocovariance at lag h, γ(h), h ∈ ZZ, are the Fourier coefficients

of S(f) and so

S(f) =
∞∑

h=−∞
γ(h) exp(−2πihf) . (8)



Non-parametric Estimation

The non-parametric method of estimating the spectrum is based on

smoothing the periodogram. Let xt, t = 1, . . . , n, be the observed time

series. Then the discrete Fourier transform of xt

X(fk) = n−1/2
n∑

t=1

xt exp(−2πitk

n
) , fk =

k

n
, k = −

[
n− 1

2

]
, . . . ,

[
n

2

]
(9)

is computed using the fast Fourier transformation and the periodogram

is formed by

I(fk) = |X(fk)|2 . (10)

The periodogram is smoothed to get an estimate of the power spectrum

Ŝ(fk) =
L∑

j=−L

wjI(fk+j) , wj = w−j ,
L∑

j=−L

wj = 1 . (11)



Parametric Estimation

We now consider basing a spectral estimator on the parameters of a p-th

order autoregressive model, i.e., an AR(p) model

xt −
p∑

k=1

φkxt−k = zt , (12)

where zt is a white noise process with mean zero and variance σ2
z .

Substituting the maximum likelihood or least squares estimators of the

model parameters, denoted by φ̂1, . . . , φ̂p and σ̂2
z , we obtain a parametric

estimate of the power spectrum

Ŝ(f) =
σ̂2

z∣∣∣1−∑p
k=1 φ̂k exp(−2πikf)

∣∣∣2
. (13)



Estimates Based on Robust Prewhitening and Filtering

Let {yk, k = 1, . . . , n} denote the observed values of a second-order sta-

tionary process with mean zero. Kleiner et al. (1979) prefer the following

autoregression prewhitened spectral density estimate which was originally

suggested by Blackman & Tukey (1958):

Ŝ(f) =
Ŝr(f)

|Ĥp(f)|2 , (14)

where Ŝr(f) is a smoothed periodogram estimate of the prediction resid-

uals rk = yk −
∑p

j=1 φ̂jyk−j, k = p + 1, . . . , n and

Ĥp(f) = 1−
p∑

j=1

φ̂j exp(i2πjf) . (15)

The basic proposal is to robustify both the numerator Ŝr(f) and the

denominator Ĥp(f) in (14).



Estimation Procedure Based on Robust Filtering

(i) We start by fitting (by least squares) the autoregression model

yk =
p∑

j=1

φ̂jyk−j + ek (16)

to the data {yk, k = 1, . . . , n} obtaining the estimate ̂φ = (φ̂1, . . . , φ̂p)>.

(ii) The robust filtering algorithm is

x̂k = x̂>k−1
̂φ + cŝψ(

yk − x̂>k−1
̂φ

cŝ
) , (17)

where x̂k−1 = (x̂k−1, . . . , x̂k−p)
> and ŝ2 is an estimate of the innova-

tions variance of the underlying process xk.

(iii) Robustly prewhitened residuals {rk, k = p + 1, . . . , n} are obtained by

rk = x̂k − x̂>k−1
̂φ = cŝψ(

yk − x̂>k−1
̂φ

cŝ
) , (18)

and these residuals are used to compute a new robust estimate ŝ.



Highly Robust Autocovariance Function

Ma & Genton (2000) suggest a highly robust autocovariance function

estimator γ̂Q(h, x) which is defined as follows. Extract the first n − h

observations of x = (x1, . . . , xn)> to produce a vector u of length n − h

and the last n−h observations of x to produce a vector v of length n−h.

Then:

γ̂Q(h, x) =
1

4
[Q2

n−h(u + v)−Q2
n−h(u− v)] . (19)

The function Qn(z) (cf. Croux & Rousseeuw, 1992) is a highly robust

estimator of scale and is defined by

Qn(z) = c{|zi − zj| : i < j}(k) , (20)

where z = (z1, . . . , zn)> is the sample and

k =
(h

2

)
, with h =

[
n

2

]
+ 1 ,

where [.] denotes the integer part. The factor c = 2.2191 is for consis-

tency.



Estimates via a Robust Autocovariance Function

We note that the classical estimator of the autocovariance function (1)

is not modified to ensure non-negative definiteness of the autocovariance

matrix.

However, we should ensure non-negative definiteness of the autocovari-

ance matrix obtained by the highly robust autocovariance estimator (19).

This can be done by shrinking, the eigenvalue or the scaling method (cf.

Rousseeuw & Molenberghs, 1993).

Now we use the highly robust autocovariance estimator in the Yule-Walker

equations to estimate the parameters of an AR(p) model robustly.

These robustly estimated parameters, ̂φ and ŝ, are directly used in the

robust filtering algorithm (17) to compute a cleaned process x̂k as well

as robustly prewhitened residuals rk.

Again Ŝr(f) is computed from the {rk, k = p + 1, . . . , n} and ̂φ is inserted

in (15) to get the robust spectrum estimate (14).



Examples

To compute the power spectrum we iterate the robust filtering algorithm

four times.

The influence function used in (17) has the redescending form

ψ(x) = x exp(− exp(q(|x| − q))) , (21)

with a value of q = 3.1.



Simulated Data

This example is a simulated process with AO composed of the following

three autoregressive processes:

uk = 0.975uk−1 + εk ,

wk = 0.95wk−1 − 0.9wk−2 + ηk ,

zk = 0.33zk−1 − 0.9zk−2 + ζk ,

with εk, ηk, ζk ∼ N(0,1). We standardize uk, wk and zk, and compute

yk =
√

75uk + wk + zk , k = 1, . . . , n ,

and then standardize yk again. Additionally we add some noise from

0.9δ0 + 0.1N(0,10).
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River Data

• river: Steyr

• gauging station: Hinterstoder (Upper Austria)

• observations: daily discharges ([m3/s]) of three years (1993-1995)
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