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Applications of Spectral Estimation

• geophysics

• signal processing

• medicine → analysis of heart rate variability (HRV)



Heart Rate Variability Data

• data: heart rate variability (HRV) recordings

(tachogram of 1321 successive heart beats)

• provided by J. Pumprla and K. Howorka,

Department of Biomedical Engineering and Physics,

General Hospital of Vienna
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Artificial Example

This example is a artificial process with AO composed of the following

three autoregressive processes:

uk = 0.975uk−1 + εk ,

wk = 0.95wk−1 − 0.9wk−2 + ηk ,

zk = 0.33zk−1 − 0.9zk−2 + ζk ,

with εk, ηk, ζk ∼ N(0,1). We standardize uk, wk and zk, and compute

yk =
√

75uk + wk + zk , k = 1, . . . , n ,

and then standardize yk again. Additionally we add some noise from

0.9δ0 + 0.1N(0,10).
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Basics

• Second-order Stationarity

• Additive Outliers

• Spectral Representation Theorem

• Non-parametric Estimation

• Parametric Estimation

• Estimates Based on Prewhitening



Additive Outliers (AO)

We say that the process {yt : t ∈ ZZ} has additive outliers (AO) if it is

defined by

yt = xt + vt (1)

where xt is an ARMA(p, q) process and the vt are independent identically

distributed (iid) with common distribution Fv = (1 − ε)δ0 + εH where δ0
is the degenerate distribution having all its mass at the origin and H is a

heavy-tailed symmetric distribution with mean 0 and variance σ2. Hence,

the ARMA(p, q) process xt is observed with probability 1− ε whereas the

ARMA(p, q) process plus an error vt is observed with probability ε. We

shall also assume that xt and vt are independent.



Estimates Based on Prewhitening

Let {xk, k = 1, . . . , N} denote the observed values of a second-order sta-

tionary process with mean zero. Kleiner et al. (1979) prefer the following

autoregression prewhitened spectral density estimate which was originally

suggested by Blackman & Tukey (1958):

Ŝ(f) =
Ŝ

(lw)
r (f)

|Ĥp(f)|2 , (2)

where Ŝ
(lw)
r (f) is a lag window spectral estimate of the prediction residuals

rk = xk −
∑p

j=1 φ̂j,pxk−j, k = p + 1, . . . , N and

Ĥp(f) = 1−
p∑

j=1

φ̂j,pe
−i2πfj∆t . (3)

One proposal is to robustify both the numerator Ŝ
(lw)
r (f) and the de-

nominator Ĥp(f) in (2) which leads to the robust Filter-cleaner approach

suggested by Martin & Thomson (1982).



Robust Filter-cleaner (Overview)

Let yt = xt + vt denote the observed process.

• Order selection of the underlying AR(p) process

• Calculating the robust estimates ̂φp = (φ̂1,p, . . . , φ̂p,p)> and σ̂2
ε,p

• Robust Filter-Cleaning of the process yt

• Calculating the prewhitened spectral estimate Ŝ(f)



Robust Filter-cleaner (Part I)

Let {yk, k = 1, . . . , N} denote the observed values of a second-order sta-

tionary process with mean zero. The filter-cleaner algorithm rely on the

AR(p) approximation of the underlying process xt, represented in the fol-

lowing state-space form with t = p + 1, . . . , N :

Xt = ΦXt−1 + U t , (4)

where

Xt = (xt, xt−1, . . . , xt−p+1)
> , (5)

U t = (εt,0, . . . ,0)> , (6)

with Φ =




φ1,p φ2,p · · · φp,p

1 · · · 0 0
... . . . ... ...
0 · · · 1 0


 , Q =




σ2
ε,p 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0


 and (7)

yt = xt + vt = (1,0, . . . ,0)Xt + vt with R = var(vt) = σ2
0 . (8)



Robust Filter-cleaner (Part II)

The algorithm computes robust estimates ̂Xt of the vector Xt according

to the following recursion:

̂Xt = Φ ̂Xt−1 +
mt

s2t
st ψ

(
yt − ŷt−1

t

st

)
(9)

with mt being the first column of M t, which is computed recursively as

M t+1 = ΦP tΦ
> + Q (10)

P t = M t − w

(
yt − ŷt−1

t

st

)
mtm>

t

s2t
. (11)

The scale st is defined by s2t = m11,t and ŷt−1
t denotes a robust one-step

prediction of yt based on Y t−1 = (y1, . . . , yt−1)
>, and is given by

ŷt−1
t = (Φ ̂Xt−1)1 . (12)

Finally, the cleaned process at time t is

x̂t = ( ̂Xt)1 . (13)



Robust Filter-cleaner (Part III)

To use the filter-cleaner algorithm we need robust estimates ̂φp and σ̂2
ε,p =

s2ε,p of φp = (φ1,p, . . . , φp,p)> and σ2
ε,p.

Until now, we have tried different approaches to obtain initial estimates

leading to similar results

• using bounded-influence autoregression (BIAR) via iterated re-weighted

least squares (IWLS) (cf. Martin & Thomson, 1982) or

• a highly robust autocovariance function estimator (cf. Ma & Genton,

2000) and the Yule-Walker equations or

• robust autoregression using LTS- and LMS-regression.
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Robust Spectral Estimation via WOSA (Overview)

• WOSA – Welch’s Overlapped Segment Averaging

• Definition of Spectral Estimation via WOSA

• Robustification of the WOSA spectral estimator



Robust Spectral Estimation via WOSA (Part 1)

Let xt, t = 1, . . . , N , be the observed process.

• Splitting the process into NB overlapping blocks of length NS

• Calculating direct spectral estimates for different blocks of NS

contiguous data values

Ŝ
(d)
l (f) := ∆t

∣∣∣∣∣∣

NS∑

t=1

htxt+l−1e−i2πft∆t

∣∣∣∣∣∣

2

, 1 ≤ l ≤ N + 1−NS . (14)

where h1, . . . , hNS
is a data taper.

• Then the WOSA spectral estimator is defined by

Ŝ(WOSA)(f) :=
1

NB

NB−1∑

j=0

Ŝ
(d)
jn+1(f) . (15)



Robust Spectral Estimation via WOSA (Part 2)

A robust spectral estimator can be obtained by replacing the sample mean

by an M-estimator (cf. Chave et al., 1987), i.e.,

min
θ

N∑

i=1

ρ

(
xi − θ

s

)
⇔

N∑

i=1

ψ

(
xi − θ

s

)
= 0 , (16)

where the xi, i = 1, . . . , N , are independent and ψ(x, θ) = ∂
∂θρ(x, θ) is called

an influence function. The solution θ̂ is called an M-estimate.

Because outlier contamination can only result in a spectrum that is biased

upwards, a special asymmetric influence function is used:

ψ(x) = x exp(− exp(β(x− β))) . (17)

The solution is calculated using iterated re-weighted least squares (IWLS)

with proper initial values, e.g., the sample median and a corrected version

of the median absolute deviation (MAD).
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Summary & Discussion

• Simulated process

- spectral estimate using the robust filter-cleaner approach: good

- robust WOSA spectral estimate: poor

• Analysis of HRV data

- spectral estimate using the robust filter-cleaner approach: poor

- robust WOSA spectral estimate: good



Further Research

• Further detailed research of the algorithms

• Using a band-pass filter in the case of the analysis of HRV data

• Extension of the spectral estimators by Thomson’s multitaper approach


