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Applications of Spectral Estimation

e geophysics
e Signal processing
e medicine — analysis of heart rate variability (HRV)



Heart Rate Variability Data

e data: heart rate variability (HRV) recordings
(tachogram of 1321 successive heart beats)

e provided by J. Pumprla and K. Howorka,
Department of Biomedical Engineering and Physics,
General Hospital of Vienna



Original Tachogram
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Original vs. Interpolated Tachogram

1600

o original
- interpolated

R-R Interval [ms]
1200 1400

1000

800

®
e )
Q)| GO, RpRBEOY
eh B> © G :
P O ¥ o X %)
Ol 0P b © & (| & l
OB ol |P
[ B O) ey
X% )
p ®
o)
l |
50 100 150 200 250 300

Time [s]




uonoun4d Ansuad renoads

Short-term Analysis of HRV Data
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Artificial Example

This example is a artificial process with AO composed of the following
three autoregressive processes:

ur =— O.975uk_1 + EL
0.95wp_1 — 0.9wi_o + 1.
zr,. = 0.332,_1—0.921_» + Ck )

Wk

with e, nr, (. ~ N(0,1). We standardize uy, wy, and z;, and compute

yk=‘v75uk—|—wk—|—zk, k=1,...,n,

and then standardize y; again. Additionally we add some noise from
0.96p + 0.1N (0, 10).



AR Process Without Outliers
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Basics

e Second-order Stationarity

e Additive Outliers

e Spectral Representation Theorem
e Non-parametric Estimation

e Parametric Estimation

e Estimates Based on Prewhitening



Additive Outliers (AO)

We say that the process {y; : t € Z} has additive outliers (AO) if it is
defined by

Yyt = xt + vt (1)

where z; is an ARMA(p, q) process and the v; are independent identically
distributed (iid) with common distribution F, = (1 — ¢)dg + ¢H where §g
IS the degenerate distribution having all its mass at the origin and H is a
heavy-tailed symmetric distribution with mean 0 and variance o2. Hence,
the ARMA(p,q) process z; is observed with probability 1 — e whereas the
ARMA(p,q) process plus an error v; is observed with probability e. We
shall also assume that z; and v; are independent.



Estimates Based on Prewhitening

Let {z;,k = 1,..., N} denote the observed values of a second-order sta-
tionary process with mean zero. Kleiner et al. (1979) prefer the following
autoregression prewhitened spectral density estimate which was originally
suggested by Blackman & Tukey (1958):

_ 5"
Hy ()2

where §7§lw)(f) is a lag window spectral estimate of the prediction residuals
T = TJ — Z?:l qu,pxk—j' k :p+ 1,...,N and

S(f) (2)

Hp(f) =13 ¢jpe 2520 (3)
j=1

One proposal is to robustify both the numerator §§lw)(f) and the de-
nominator f{\p(f) in (2) which leads to the robust Filter-cleaner approach
suggested by Martin & Thomson (1982).



Robust Filter-cleaner (Overview)

Let y; = x; + v+ denote the observed process.

e Order selection of the underlying AR(p) process
e Calculating the robust estimates ¢, = (¢1,,...,épp) | and 52,
e Robust Filter-Cleaning of the process y;
[

Calculating the prewhitened spectral estimate §(f)



Robust Filter-cleaner (Part I)

Let {yp,k = 1,..., N} denote the observed values of a second-order sta-
tionary process with mean zero. The filter-cleaner algorithm rely on the
AR(p) approximation of the underlying process z;, represented in the fol-
lowing state-space form with t=p+41,..., N:

X;=®X, {+U,;, (4)
where
Xt — (mtamt—lw'th—p—l—l)—l— ) (5>
Ut — (€t707"'7O)T 9 (6>
P1p P2p 0 Ppp oz, 0 -+ 0
with & = 1 o ? ? . Q= 0 (_) - 0| and (7)

ytza:t—l—vtz(1,0,...,O)Xt—|—vt with R=var(vt)=08. (8)



Robust Filter-cleaner (Part II)

The algorithm computes robust estimates X; of the vector X; according
to the following recursion:

~t—1
v v my Yt — Y
X=X, 1+~ SMD( L ) (9)
S} St
with m; being the first column of M, which is computed recursively as
My, = ®P®' +Q (10)
a1 T
P, = Mt—w<yt Yt )mt?’t | (11)
St St
The scale s¢ is defined by Stz = m11,+ and gﬁ‘l denotes a robust one-step
prediction of y; based on Y1 = (y1,...,4,_1)", and is given by
gt =(®X-1)1 - (12)

Finally, the cleaned process at time ¢t is

7= (Xt)1 - (13)



Robust Filter-cleaner (Part III)

To use the filter-cleaner algorithm we need robust estimates qbp and o a Ep =
s2, of ¢, = (p1p,.--,dpp) | and o2,

Until now, we have tried different approaches to obtain initial estimates
leading to similar results

e using bounded-influence autoregression (BIAR) via iterated re-weighted
least squares (IWLS) (cf. Martin & Thomson, 1982) or

e a highly robust autocovariance function estimator (cf. Ma & Genton,
2000) and the Yule-Walker equations or

e robust autoregression using LTS- and LMS-regression.



spectrum

1 e-01 1 e+00 1 e+01 1 e+02

1 e-02

Spectrum Estimation Using a Robust Filter—Cleaner

N
\
|
! /v
\ [ \
4
! I ’\\ [ ,\"\ ,"\ Vi ,
! v e / v, 1 I\ vy
! I\ r I Yo 1! [ ' | N N
\ {8 | [ ) N, \ | o N \ TN N
\ A ) \ r\ R -~ \ . 1 \ - 1 | 1} 1 ll
P \ ARl ! I | N, o~ l L \
AR N ! N o ! [ Lo | \ ) !
! \ 1 v \ ! Y I ! ! by
) 1 Ny \, '| v vy I \ |
f vy v | ! \ \ vy !
v ! V! ! | ) !
(] V! - L] \ l'
1y V W
1y !
\
\\ .(
— original AR
--- classical
— robust
I I I I I I

0.0

0.1

0.2 0.3

frequency [cycles per unit time]

0.4

0.5




Analysis of HRV Data Using a Robust Filter—Cleaner
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Robust Spectral Estimation via WOSA (Overview)

o WOSA — Welch's Overlapped Segment Averaging
e Definition of Spectral Estimation via WOSA
e Robustification of the WOSA spectral estimator



Robust Spectral Estimation via WOSA (Part 1)

Let ¢, t=1,..., N, be the observed process.
e Splitting the process into Ng overlapping blocks of length Ng

e Calculating direct spectral estimates for different blocks of Ng
contiguous data values

Ng | 2
SOy = At|S hymyqg1e AN 1 <I<KN+1-Ng. (14)
t=1
where hl,...,hNS IS a data taper.

e [ hen the WOSA spectral estimator is defined by

; 18 )
SO gy 1= = N S (15)
j=0



Robust Spectral Estimation via WOSA (Part 2)

A robust spectral estimator can be obtained by replacing the sample mean
by an M-estimator (cf. Chave et al., 1987), i.e.,

S

where the z;, 1 = 1,..., N, are independent and ¢ (x,0) = %p(m, ) is called
an influence function. The solution 6 is called an M-estimate.

Because outlier contamination can only result in a spectrum that is biased
upwards, a special asymmetric influence function is used:

Y(z) = zexp(—exp(B(z — B))) . (17)

The solution is calculated using iterated re-weighted least squares (IWLS)
with proper initial values, e.g., the sample median and a corrected version
of the median absolute deviation (MAD).



spectrum
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Analysis of HRV Data via WOSA
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Summary & Discussion

e Simulated process
- spectral estimate using the robust filter-cleaner approach: good
- robust WOSA spectral estimate: pPOOr

e Analysis of HRV data
- spectral estimate using the robust filter-cleaner approach: poor
- robust WOSA spectral estimate: good



Further Research

e Further detailed research of the algorithms
e Using a band-pass filter in the case of the analysis of HRV data
e Extension of the spectral estimators by Thomson’'s multitaper approach



