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Motivation

Analysis of Heart Rate Variability (HRV) as a non-invasive method for

diabetic patients



Second-order Stationarity

Consider a time series {xt : t ∈ ZZ} and assume that it satisfies the hy-

pothesis of second-order stationarity:

(i) E(x2
t ) < ∞ ∀ t ∈ ZZ

(ii) E(xt) = µ = constant ∀ t ∈ ZZ

(iii) cov(xt+h, xt) = γ(h) ∀ t, h ∈ ZZ

where γ(h) is the autocovariance function of xt at lag h.



ARMA(p, q) Process

A univariate time series xt, t = 0,±1,±2, . . . , is said to be an ARMA(p, q)

process if xt is stationary and

xt = φ1xt−1 + . . . + φpxt−p + wt + θ1wt−1 + . . . + θqwt−q , (1)

with φp 6= 0 and θq 6= 0. The innovation process wt in (1) is a white noise

process with σ2
w > 0.



Additive Outliers (AO)

The process {yt : t ∈ ZZ} is said to have additive outliers (AO) if it is

defined by

yt = xt + vt (2)

where xt is an ARMA(p, q) process and the vt are independent identically

distributed (iid) with common distribution Fv = (1 − ε)δ0 + εH where δ0
is the degenerate distribution having all its mass at the origin and H is a

heavy-tailed symmetric distribution with mean 0 and variance σ2. Hence,

the ARMA(p, q) process xt is observed with probability 1− ε whereas the

ARMA(p, q) process plus an error vt is observed with probability ε. We

shall also assume that xt and vt are independent.



Spectral Representation Theorem

Any second-order stationary process xt has the spectral representation

xt =
∫ 1/2

−1/2
exp(−2πitf) dZ(f) (3)

where Z(f), −1/2 ≤ f ≤ 1/2, has stationary uncorrelated increments. The

process Z(f) defines a monotone nondecreasing function F (f) through

F (f) = E|Z(f)|2, dF (f) = E|dZ(f)|2, F (−1/2) = 0, F (1/2) = σ2 = γ(0) .

The function F (f) is called the spectral distribution function. If the

autocovariance function is absolutely summable, i.e.,
∑∞

h=−∞ |γ(h)| < ∞,

the spectral distribution function is absolutely continuous with dF (f) =

S(f) df . S(f) is called the spectral density function of the process xt.

Other commonly used terms for S(f) are spectral density , spectrum or

power spectrum.



Definition of the Power Spectrum

It follows that any process with autocovariance function γ(h) satisfying

∞∑

h=−∞
|γ(h)| < ∞ (4)

has the representation

γ(h) =
∫ 1/2

−1/2
exp(2πihf)S(f) df, h ∈ ZZ . (5)

Thus the autocovariance at lag h, γ(h), h ∈ ZZ, are the Fourier coefficients

of S(f) and so

S(f) =
∞∑

h=−∞
γ(h) exp(−2πihf) . (6)



Non-parametric Estimation

The non-parametric method of estimating the spectrum is based on

smoothing the periodogram. Let xt, t = 1, . . . , n, be the observed time

series. Then the discrete Fourier transform of xt

X(fk) = n−1/2
n∑

t=1

xt exp(−2πitk

n
) , fk =

k

n
, k = −

[
n− 1

2

]
, . . . ,

[
n

2

]
(7)

is computed using the fast Fourier transformation and the periodogram

is formed by

I(fk) = |X(fk)|2 . (8)

The periodogram is smoothed to get an estimate of the power spectrum

Ŝ(fk) =
L∑

j=−L

wjI(fk+j) , wj = w−j ,
L∑

j=−L

wj = 1 . (9)



Parametric Estimation

We now consider basing a spectral estimator on the parameters of a p-th

order autoregressive model, i.e., an AR(p) model

xt −
p∑

k=1

φkxt−k = zt , (10)

where zt is a white noise process with mean zero and variance σ2
z .

Substituting the maximum likelihood or least squares estimators of the

model parameters, denoted by φ̂1, . . . , φ̂p and σ̂2
z , we obtain a parametric

estimate of the power spectrum

Ŝ(f) =
σ̂2

z∣∣∣1−∑p
k=1 φ̂k exp(−2πikf)

∣∣∣2
. (11)



Estimates Based on Robust Prewhitening and Filtering

Let {yk, k = 1, . . . , n} denote the observed values of a second-order sta-

tionary process with mean zero. Kleiner et al. (1979) prefer the following

autoregression prewhitened spectral density estimate which was originally

suggested by Blackman & Tukey (1958):

Ŝ(f) =
Ŝr(f)

|Ĥp(f)|2 , (12)

where Ŝr(f) is a smoothed periodogram estimate of the prediction resid-

uals rk = yk −
∑p

j=1 φ̂jyk−j, k = p + 1, . . . , n and

Ĥp(f) = 1−
p∑

j=1

φ̂j exp(i2πjf) . (13)

The basic proposal is to robustify both the numerator Ŝr(f) and the

denominator Ĥp(f) in (12).



Robust Filter-Cleaner (Part I)

The filter-cleaner algorithm rely on the AR(p) approximation of the pro-

cess xt, represented in the following state-space form with t = p+1, . . . , n:

Xt = ΦXt−1 + U t , (14)

where

Xt = (xt, xt−1, . . . , xt−p+1)
> , (15)

U t = (εt,0, . . . ,0)> , (16)

with Φ =




φ1 φ2 · · · φp

1 · · · 0 0
... . . . ... ...
0 · · · 1 0


 , Q =




σ2
ε 0 · · · 0
0 0 · · · 0
... ... . . . ...
0 0 · · · 0


 and (17)

yt = xt + vt = (1,0, . . . ,0)Xt + vt with R = var(vt) = σ2
0 . (18)



Robust Filter-Cleaner (Part II)

The algorithm computes robust estimates ̂Xt of the vector Xt according

to the following recursion:

̂Xt = Φ ̂Xt−1 +
mt

s2t
st ψ

(
yt − ŷt−1

t

st

)
(19)

with mt being the first column of M t, which is computed recursively as

M t+1 = ΦP tΦ
> + Q (20)

P t = M t − w

(
yt − ŷt−1

t

st

)
mtm>

t

s2t
. (21)

The scale st is defined by s2t = m11,t and ŷt−1
t denotes a robust one-step

prediction of yt based on Y t−1 = (y1, . . . , yt−1)
>, and is given by

ŷt−1
t = (Φ ̂Xt−1)1 . (22)

Finally, the cleaned process at time t is

x̂t = ( ̂Xt)1 . (23)



Robust Filter-Cleaner (Part III)

To use the filter-cleaner algorithm we need robust estimates ̂φ and σ̂2
ε = ŝ2ε

of φ = (φ1, . . . , φp)> and σ2
ε .

Until now, we have tried two different approaches to obtain initial esti-

mates

• using bounded-influence autoregession (BIAR) via iterated re-weighted

least squares (IWLS) (cf. Martin & Thomson, 1982) or

• a highly robust autocovariance function estimator (cf. Ma & Genton,

2000) and the Yule-Walker equations

⇒ similar results



Highly Robust Autocovariance Function

Ma & Genton (2000) suggest a highly robust autocovariance function

estimator γ̂Q(h, x) which is defined as follows. Extract the first n − h

observations of x = (x1, . . . , xn)> to produce a vector u of length n − h

and the last n−h observations of x to produce a vector v of length n−h.

Then:

γ̂Q(h, x) =
1

4
[Q2

n−h(u + v)−Q2
n−h(u− v)] . (24)

The function Qn(z) (cf. Croux & Rousseeuw, 1992) is a highly robust

estimator of scale and is defined by

Qn(z) = c{|zi − zj| : i < j}(k) , (25)

where z = (z1, . . . , zn)> is the sample and

k =
(h

2

)
, with h =

[
n

2

]
+ 1 ,

where [.] denotes the integer part. The factor c = 2.2191 is for consis-

tency.



Artificial Data

This example is a artificial process with AO composed of the following

three autoregressive processes:

uk = 0.975uk−1 + εk ,

wk = 0.95wk−1 − 0.9wk−2 + ηk ,

zk = 0.33zk−1 − 0.9zk−2 + ζk ,

with εk, ηk, ζk ∼ N(0,1). We standardize uk, wk and zk, and compute

yk =
√

75uk + wk + zk , k = 1, . . . , n ,

and then standardize yk again. Additionally we add some noise from

0.9δ0 + 0.1N(0,10).



Time

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4
6



0.0 0.1 0.2 0.3 0.4 0.5

5 
  e

−
03

5 
  e

−
02

5 
  e

−
01

5 
  e

+
00

5 
  e

+
01

frequency

sp
ec

tr
um

Robust Spectrum Estimation Using a Robust Filter−Cleaner

robust
classical
theoretical



Heart Rate Variabiliy Data

• data: heart rate variability (HRV) recordings

(tachogram of 1321 successive heart beats)

• provided by J. Pumprla and K. Howorka,

Department of Biomedical Engineering and Physics,

General Hospital of Vienna
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Classical Short−term Analysis of HRV with AO

Maximum:  44.05 *10^3 [ms^2]
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Classical Short−term Analysis of HRV without Outliers

Maximum:  37.979 *10^3 [ms^2]
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Maximum:  224.82 *10^3 [ms^2]
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Classical Short−term Analysis without Outliers vs. Robust Short−term Analysis with AO

Minimum:  −212.139 *10^3 [ms^2], Maximum:  4.6 *10^3 [ms^2]
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