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PRELIMINARY REMARKS

PRELIMINARY REMARKS

sEOSTATISTICS

(much more than Kriging methodology!) has spread from traditional areas of
application (mining and oil exploration) to nearly all branches of bio, earth and
environmental sciences, medicine and technology

RECENT AREAS OF APPLICATION:

(]
"]
(]
]

Public Health + Epidemiology

Precision Farming

Image Analysis (Gibbs/Markov-RF)

Statistical Process Control (Semiconductor industry)

Telecommunication network design

Partial Convergence with Machine Learning methodology




PRELIMINARY REMARKS

sEOSTATISTICS

= Statistical analysis of random phenomena distributed in space (and time)
using the theory of Random Functions (Random Fields)

MILESTONE-BOOKS

during the last 15 years:

@ 1993: N. Cressie: Statistics for Spatial Data. Rev. ed., Wiley

@ 1997: P. Goovaerts: Geostatistics for Natural Resources Evaluation.
Oxford Univ. Press

@ 1999: M.L. Stein: Interpolation of Spatial Data. Some Theory for
Kriging. Springer




PRELIMINARY REMARKS

@ 1999: J.-P. Chiles & P. Delfiner: Geostatistics: Modeling Spatial
Uncertainty. Wiley

@ 1999: R. Olea: Geostatistics for Engineers and Earth Scientists. Springer
@ 2003: H. Wackernagel: Multivariate Geostatistics. 3rd ed., Springer

@ 2003: S. Banerjee, B.P. Carlin & A. Gelfand: Hierarchical Modeling and
Analysis for Spatial Data. CRC Chapman & Hall

@ 2007: R. Webster & M. A. Oliver: Geostatistics for Environmental
Scientists. 2nd ed., Wiley

@ 2007: P.J. Diggle & P.J. Ribeiro, P.J.: Model-based Geostatistics.
Springer




PRELIMINARY REMARKS

MOST RECENT BOOKS:

@ R. Bivand, E. Pebesma and V. Gomez-Rubio: Applied Spatial Data
Analysis with R. Springer 2008

@ J. Pilz (Ed.): Interfacing Geostatistics and GIS. Springer 2009

CURRENT RESEARCH ISSUES:

@ Non-Gaussianity

@ Non-stationarity (Direct modeling via kernels, Grid deformation)
@ Spatio-temporal extensions (Space-time covariance functions)
°

Spatio-temporal monitoring network design/design of computer
experiments




KRIGING

SPATIAL LINEAR MODEL/KRIGING

Z(x)
Data

m(x) + e(x); xeDCRYd>1
Trend +  Error

LINEAR TREND MODEL:

(1)m(x) = E{Z(x)|8,6} = f(x)" 3
7N\

Trend parameter  covariance parameter

e.g. polynomials: m(x1,x2) = Bo + Bix1 + Box2
(2)Cov{(Z(x1), Z(x2))IB,0} = Co(x1 — x2)

covariance stationarity

(1) + (2) = universal kriging setup




KRIGING

GIVEN:

observations at points xi,...,x, € D

Z=(Z(x1),...,Z(x»))" observation vector

YOAL:

Prediction of Z(x0) at xo € D,
i.e. choose Z(xo) such that

E{Z(x) — Z(x0)}*> — /\/gn

SPATIAL BLUP

2UK(X) = )\TZ

ta kes the form R .

Zuk(x0) = f(x0) B+ c(x) K™ (Z - FB)
——

! !
GLS of residual vector




KRIGING

WHERE

F = (f(x),...,f(xs))" = design matrix

c(xo) (Cov(Z(x0), Z(x1)))iz1....m

25

K = (Cov(Z(xi),Z(x)))i,j=1,....n

= covariance matrix of Z

USUALLY,

further assumptions like
isotropy: Co(x1 — x2) = Co(||x1 — x2||)
sparse parametrization: 6 = (61,0, 03)
= (nugget, sill, range)




KRIGING

STATISTICAL / NUMERICAL PROBLEM:

non-linearity in 6 (esp. in range)

WEAK POINT

of kriging: BLUP-optimality rests on exact knowledge of covariance function.
In practice however: plug-in-kriging using empirical moment estimator of the
cov. function, which is then fitted to some (conditionally) pos. semidefinite
function

FOR SENSIBLE

predictions: further assumptions about the law of the R.F. are required. Local
behaviour of the R.F. is critical




ESSENTIAL PROPERTY:

Mean square differentiability
(defined as an Lp-limit)

RESsULT:

Z is m-times m.s.d. iff |CC™(0)| < 00; (m=1,2,...)
Local behaviour of W.R.F.’s is best studied using spectral methods

BOCHNER’S THEOREM:

C(-) is cov. function for a w.m.s.c. R.F. on RY «—

C(x) = /Rd exp(iw x) F(dw)
1

positive finite measure
= spectral measure

= Spectral density & Covariance function form a Fourier pair




MATERN

MATERN CLASS OF COVARIANCE FUNCTIONS

MATERN CLASS

of covariance functions widely popular over the last 10 years:
Co(h) = c x (alh)"K.(alhl)

K = modified Bessel function of order v

0 = (c, a, v) = (sill, scale, smoothness) € (0, 00)*

Spectral density: fiy(w) = c(a? 4+ w?)~¥~9/2
valid for isotropic R.F.s in any dimension d!

Fitting procedures in: geoR, geoRglm (Diggle& Ribeiro, 2007)
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Matern-type covariance functions
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F1GURE: Matérn Covariance Functions



PREDICTION

PREDICTION USING LIKELIHOOD METHODS

ASSUMPTION:

Z(-) ~ Gaussian R.F. on R?

Z(x) = f(x)" B +e(x); Ee(x)=0

with 8 € R" = Trend parameter vector

Covariance function Cy(h) = Matérn cov. function

— Z=(Z(x1),...,Z(xs))" = observation vector

~ Multivariate Normal




PREDICTION

LOG-LIKELIHOOD-FUNCTION

1(8,0) = —2log(2m) — 3 log detK(6)

—3(Z - FB)"K(0)™(Z— FP)
For any given 0, I(-,0) is maximized by
BO) =[FTKO)'FI'FTK(0)'Z
PN 7

design matrix covariance matrix

PROBLEM:

Maximize /(3(8),60) w.r. to 6
I

profile log-likelihood for 6




PREDICTION

DISADVANTAGE:

@ MLE of 6 tends to underestimate the variation

@ Adjustments for the bias not available

EXTENSION:

| A

non-Gaussian R.F.s
Need models / computational methods for calculating likelihood functions
Diggle, Tawn & Moyeed (1998): MCMC methods

KEY:
Model-based Geostatistics
= serious computational issues!

A




BAYESIAN

BAYESIAN APPROACH

ADVANTAGE:

provides a general methodology for taking into account the uncertainty about
parameters on subsequent predictions.

Especially important for the Matérn class:

Large uncertainty about v, it is impossible to obtain defensible MSE's from the
data without incorporating prior information about v!

First versions of Bayesian Kriging:
Kitanidis (1986), Omre (1987)




BAYESIAN

BAYESIAN SOLUTION:

For making inferences about Z(xo) =: Zo, use the predictive density p(Zy|Z)
given the data Z = (Z(x1), ..., Z(x2))7,

! 1

trend parameter covariance par.

p(2:/2) = / / p(2016,9, Z)p(5, 0|2)d B0
® B

(1st order par.) (2nd order par.)
where p(3,6|Z) = posterior density

_ P(Z]5,0)p(5,0)
Gf)sfp(z\ﬁ, 0)p(5,0)dBdo

o likelihood f. * prior d.




BAYESIAN

PROPOSAL:

conditional simulation

p(8,01Z) o p(Z|0,5) *p(5) * p(0|Z)

likelihood f. simulation

Empirical Bayes approach, see Pilz & Spdck, SERRA (2008)

Objective Bayesian analysis:
determine non-informative priors
Berger, Sanso, DeOliveira 2001
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EXTENSION I: BAYESIAN TRANS-(GAUSSIAN
PREDICTION

THE TRANSFORMED (GAUSSIAN MODEL

@ Observations from random field {Z(x),x € X C R™}.

@ Box-Cox family of power transformations (Box and Cox, 1964)

_ 21 A#0
g)\(z)—{ IogE\z) : A=0

@ transforms the random field Z(x) for some unknown parameter A to a
Gaussian one with unknown trend and unknown covariance function

Co (X1, XQ).
@ Definition of prior:
©=()0)
P(3,0) = p(B, A, 0)




EXTENSION T

@ Likelihood:

p(Zo, Zaat|3,©) =

p(g)‘(ZO? Zdat)|ﬁ7 )\v 93 02) 3 J)\(ZO, Zdat)

normal Jacobian

@ Generalization:
arbitrary monotone transformations g(z), e.g. g(z) = log(— log(1 — z))

@ Posterior Predictive Distribution:

P(Zo|Zaar) = / P(Zo|Zazt, ©) p(O]Zaar) dO,
o —--u—"

Gaussian ?

SOLUTION

@ Instead of specifying the prior we specify the posterior p(©|Zgat) by
means of a parametric bootstrap of some estimator of ©.
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Histogram of Gomel data

F1cURE: Histogram of Gomel data



posterior of anisotropy axes

FIGURE: Bootstrapped anisotropy axes
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@ Complete probability distribution (not only kriged values + variances)

@ We have median, quantiles a.s.o.

—— threshold values, confidence intervals a.s.o.

@ “Automatic” Bayes procedure
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(xy)=(134.7458,27.9661)

0.035F

0,025

100

FIGURE: Posterior predictive distribution at (x,y)=(134.7,27.9)



FIGURE: 95% posterior predictive quantile



FIGURE: posterior predictive mean



standard deviation

FIGURE: posterior predictive standard deviation



treshold 8

FIGURE: probability to be above threshold 8.0
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(cross)validation

expected percent data above threshold
AN

) 10 20 70 80 %0

60
percent actual data above threshold

FIGURE: predicted percentage versus actual percentage of data above
threshold
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EXTENSION II: SPATIAL MODELLING USING COPULAS

PROBLEM:
What can we do if data are extreme, highly skewed?
Copula-based spatial modeling

COPULAS

are distribution functions on the unit cube [0, 1]"

Sklar’s Theorem

Let H be an n-dimensional distribution function with margins Fi,..., F,. Then
there exists an n-dimensional copula C such that for all x = (x1,...,x,) € R”

H(xi,...,xn) = C(F1(x1),..., Fn(xn))

If F1,..., F, are all continuous, then C is unique. Conversely, it holds:

Cu,... u) = H(F;l(ul),.,,,F;I(u,,)) :




EXTENSION II: SPATIAL MODELLING USING

PROPERTIES OF COPULAS

@ Copulas describe the dependence between the quantiles of random
variables. They describe dependence without information about marginal
distributions.

@ Copulas are invariant under strictly increasing transformations of the
random variables. Frequently applied data transformations do not change
the copula.

@ Random variables Xi, ..., X, are stochastically independent if and only if
their copula is the product copula MN” (u) = []7_; u;.

@ Bivariate copulas are directly related to the Spearman-p correlation
coefficient:

(Xl,Xz 12// C U1,U2 duldU2 3
0

0




EXTENSION II: SPATIAL MODELLING USING

COPULAS IN GEOSTATISTICS

How to incorporate copulas into the geostatistical framework?

The copula becomes a function of the separating vector h and does not depend
on the location (due to the stationarity). The dependence of any two locations
separated by the vector h is described by

P(Z (X) < Zl,Z(X—|— h) < 22) =G (FZ (21) ,Fz (ZQ)),

where F7 is the univariate distribution of the random process and is assumed to
be the same for each location x. (Bardossy, 2006)

It is advantageous to work with copulas constructed from elliptical distributions
since the correlation matrix explicitly appears in their analytical expression and
can be parameterized by a correlation function model.




@ Gaussian Copula: C (u1,...,un) = ®ox (®7' (w1),..., 07" (un)).
@ ?-copula (Bardossy)




EXTENSION II: SPATIAL MODELLING USING

THE GAUSSIAN SPATIAL COPULA

Sklar's Theorem provides a simple way of constructing copulas from
multivariate distributions. The Gaussian copula is

CE (..., un) = Doz (qu (t),..., 7" (un)) .

Parameterize the correlation matrix X by one of the well-known geostatistical
correlation function models. The Gaussian copula is radially symmetric, which
is quite restrictive: ¢g (u1,...,un) =c (1 —u1,...,1— up,).

Gaussian Copula, =085 Gaussian copula density, =085




EXTENSION II: SPATIAL MODELLING USING

NON-CENTRAL Y2-COPULA

BIVARIATE NON-CENTRAL ?-COPULA

Bivariate non-central y°-copula, where the underlying bivariate Gaussian
random variable has correlation r = 0.85 and mean m = 1. Not radially
symmetric but symmetric.

Copula Density




EXTENSION II: SPATIAL MODELLING USING
€000000

PARAMETER ESTIMATION FOR CONT. MARGINALS

MAXIMUM LIKELIHOOD

Let ©® = (0, ) be the parameter vector, where 6 are the correlation function
(and anisotropy) parameters and A are the parameters of the known family of
univariate distributions F.

1(©;Z(x1),...,Z(xn)) =

o (Fx(Z(x1)), -+ Fx (Z (x0))) H i (2 (x))




EXTENSION II: SPATIAL MODELLING USING
0@00000

MODEL-BASED APPROACH

PLUG-IN ESTIMATOR

We use the predictive distribution in the rank space. Taking the
ML-estimations, ©, as the true values we arrive at the plug-in estimator

2 (x0) = E(z(xo)\ z(xl),...7z(xn),é).

The estimator can therefore be obtained as

2(x0) = /F/\_l(u(xo))(:g(u(xo)|u(xl),...,u(x,,))du(xo).

0

Jacobian conditional copula

Not difficult with Gaussian copula




EQUIVALENCE

The trans-Gaussian kriging model using any strictly monotone transformation is
equivalent to the Gaussian spatial copula model.

Proof follows from the invariance under strictly increasing transformations and
the radial-symmetry of the Gaussian distribution.
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ADVANTAGES OF COPULA KRIGING

@ Any other copula different from the Gaussian copula can be used which
leads to a generalization of trans-Gaussian kriging

@ Even if we stay within the Gaussian framework, it is simpler to specify a
family of marginal distributions than to determine a suitable
transformation function, especially for multi-modal and extreme-value
data

@ Full predictive distribution is available and can be used to calculate
predictive quantiles, confidence regions and prediction variance

@ Easily extendable to a Bayesian approach

@ Shares properties with kriging such as being exact at known locations

@ Incorporating covariates is easy to do
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EC-STREP “INTAMAP” (INTEROPERABILITY AND AUTOMATIC
MAPPING)

@ Main objective of this project (IST, FP6): develop an interoperable
framework for real time automatic mapping of critical environmental
variables by extending spatial statistical methods and employing open,
web-based, data exchange and visualisation tools.

@ Project includes partners from Austria, Germany, Netherlands, Italy, Great
Britain and Greece, for further information see

@ www.intamap.org

MAIN APPLICATION:

System for automated mapping of radiation levels reported by 30 European
countries participating in

EURDEP = European Radiological Data Exchange Platform

Data availability in nearly real-time (more and more on an hourly basis)
currently: > 4200 stations



www.intamap.org

EURDEP DATA FLOW

e Mirror

FTP

=

ECMRC

(Ispra)
Italy

S

Mirror

BfS/IAR
{Freiburg)
Germany

EURDEP database

WEBSITE

: EUROPEAN AGGREGATED DATA
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000000e

AN OVERVIEW

of the achievements of the INTAMARP-Project, including prototype
demonstration + specific workshops by the project partners, was given at

Int. StatGIS 2009 Conference,
“Geoinformatics for Environmental Surveillance”
Milos, Greece, June 17-19, 2009




HELICOPTER DATA SET

4000 |5

3000

o
2000

1000

T e
~ 3.30381 x10°

HELICOPTER DATA

Measurements of gamma dose rates in Oranienburg, Germany. Log-normal
marginals are not right-skewed enough to model the radioactivity hotspots.
Therefore, use of the generalized extreme value distribution: A = (y, o, K).

[ n [ Min [ Mean [ Median [ Max [ Stand. dev. [ Skewness |

[ Heli ][ 902 | 313 | 863.92 [ 780.5 [ 5420 | 48206 | 4.74

|

v




ANALYSIS OF HELICOPTER DATA 1

@ The Gaussian spatial copula is used
@ Geometric anisotropy is considered

@ Correlation function model is chosen to be a Matern model including a
nugget effect: 91, 92, K

@ Parameter point estimates are obtained using maximum likelihood

Plug-in Gaussian copula - confidence Intervals
6000 T T T T

5000 — —
4000 — |

3000 — —

et AL

1 1 1 1 1
] 100 200 300 400 500 600 700 800 9200
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P(Z(x)<500) P(Z(x)<650) P{Z(x)<800)

0 1000 2000

P(Z(x)<50) P(Z(x)<1500) P(Z(x)<4000)

4000

3000

B

2000

1000

3 1000 2000 0 1000 2000
x.




ANALYSIS OF HELICOPTER DATA 111

CROSS- VALIDATION

[ GC [ IDW | OK [ PSGP [ TGK |
RMSE 72.38 | 167.15 | 149.57 | 104.07 | 85.90
MAE 34.74 | 6319 | 55.05 | 41.73 | 37.69

The approaches using the Gaussian copula (GC) clearly outperform Inverse
Distance Weighting (IDW), Ordinary kriging (OK), Projected Sequential
Gaussian Processes (PSPG) and trans-Gaussian kriging (TGK) with the
Box-Cox transformation.

Plug-in Gaussian copula
6000

5000

Copulas can be used to flexibly describe
spatial dependence and to perform spatial
interpolation. Geostatistical methods using
copulas are very much suited to model

4000+

Observed values
@
8
S
8

2000 -

1000 -

spatial extremes.

0 1000 2000 3000 4000 5000 6000
Predicted values
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MAIN PROPERTIES OF THE R-SOFTWARE

@ Code for estimation of parameters and prediction at unobserved locations
in the case of the Gaussian spatial copula model and the non-central
X?-copula model with continuous marginals is part of the intamap
R-library. It is freely available from
https://sourceforge.net/projects/intamap.

@ Automatic choice of marginal distribution, correlation function model,
anisotropy and starting values by using certain heuristics.

@ Additionally, the intamap library performs

Inverse Distance Weighting (library gstat),

Ordinary Kriging (library gstat),

Projected Sequential Gaussian Processes (library psgp),
Trans-Gaussian Kriging (library gstat).

@ The intamap package will be also available from CRAN soon.




SOFTWARE 11

COMMANDS

There are two main functions, estimateParameters.copula and
spatialPredict.copula, that perform parameter estimation and spatial
prediction for an intamapObject of the class copula.

intamapObject<-createIntamapObject (observations=observations,
predictionLocations=predictionLocations,class="copula")

It is possible to work with trend surface models by setting the argument
formulaString of the intamapObject accordingly. The requested prediction
types are defined by the argument outputWhat:

outputWhat = list(mean = TRUE, variance = FALSE, excProb = 10,
excprob = 20, quantile = 0.025, quantile = 0.975)

The user has the choice to specify the correlation function model, anisotropy
and starting values of the optimization himself or to let the program choose
them.
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THE INTERPOLATE-FU

The interpolate function of the intamap R-package is designed for automatic
spatial modeling and interpolation. The function decides which of the following
three interpolation methods to apply: automap (ordinary kriging as
implemented in the R-package automap), psgp and copula. If copula is
chosen

@ the function estimateAnisotropy decides whether to include geometric
anisotropy into the analysis or not,

@ autofitVariogram of the automap R-library is used to select a correlation
model and starting parameters for the corresponding parameters,

@ the Gaussian, the log-Gaussian, the Student-t, the generalized extreme
value (GEV) and the logistic distribution are tested and the best fitting
one is chosen,

@ the Gaussian copula is used.




SOFTWARE IV

COMPUTATION TIME

Computation time is a major issue for the spatial copula algorithms. The
following will influence the computational load:

@ The number of observations.

@ For the non-central x2-copula model computation will take much longer
since a composite-likelihood approach is used.

@ If the Matern model is chosen, the algorithm will be slower because the
besselk function needs to be evaluated and there is one additional
parameter.

@ If the GEV distribution is chosen, the algorithm will be slower because
there are three parameters to optimize instead of only two.

@ Additionally accounting for covariates slows down the estimation process,
since regression parameters are introduced and need to be optimized.

@ Prediction is slower when quantiles of the predictive distribution are
requested. This is because an integral equation is solved numerically.

@ “Good" initial values for the optimization reduce the computational load
since fewer iterations are needed to reach convergence.




[3 H. Kazianka and J. Pilz.
Bayesian spatial modeling and interpolation using copulas.
In D. Hristopoulos, editor, StatGIS 2009, Chania, 2009. Technical
University of Crete.

[3 H. Kazianka and J. Pilz.
Bayesian spatial modeling and interpolation using copulas.

Computers and Geosciences, Special issue on “Geolnformatics for
environmental surveillance” (submitted), 2009.

@ H. Kazianka and J. Pilz.

Copula-based geostatistical modeling of continuous and discrete data
including covariates.
Stochastic Environmental Research and Risk Assessment, (in press), 2009.

[§ H. Kazianka and J. Pilz.
Spatial interpolation using copula-based geostatistical models.
In P. Atkinson and C. Lloyd, editors, GeoENV VII - Geostatistics for
Environmental Applications. Springer, Berlin, 2009.

@ H. Kazianka, G. Spock, and J. Pilz.

Modeling and interpolation of non-Gaussian spatial data: a comparative
study.



In D. Hristopoulos, editor, StatGIS 2009, Chania, 2009. Technical
University of Crete.

[3 J. Pilz, H. Kazianka, and G. Spdck.
Interoperability - Spatial interpolation and automated mapping.

In T. Tsiligiridis, editor, Proceedings of the 4th International Conference
on Information and Communication Technologies in Bio and Earch
Sciences HAICTA 2008, pages 110-118, Athens, 2008. Agricultural
University of Athens.

[ G. Spsck, H. Kazianka, and J. Pilz.
Bayesian trans-Gaussian kriging with log-log transformed skew data.

In J. Pilz, editor, Interfacing Geostatistics and GIS, pages 29-44. Springer,
Berlin, 2009.
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