Teaching Statistics With R: Beyond E-Learning Systems

Matthias Templ, Gerlinde Dinges

Department of Statistics and Probability Theory Vienna University of Technology & Statistics Austria

Boku, January. 16, 2009

Templ, Dinges (TUW)

Teaching Statistics With R

Boku, January. 16, 2009 1 / 16

Content

Implementation

Templ, Dinges (TUW)

Teaching Statistics With R

Boku, January. 16, 2009 2 / 16

Teaching Statistics in Statistics Austria

- Methodology 1 (4 \times 3 hours): Motivation to Statistics, Basics, Descriptive Statistics, Probability Theory, Indices, Data Visualization.
- Methodology 2 (5 × 3 hours): Complex Sampling Theory, Calibration, Point and Interval Estimation, Tests, Quality Aspects, Covariance Estimation.
- Methodology 3 (5 × 3 hours): Regression, Time Series Analysis, Saisonal Adjustment, Imputation, Editing, Statistical Matching.
- Statistical Disclosure Control (1 × 4 hours): Remote Execution and Remote Access, Microdata Protection, Protection of statistical tables.

- course participants with (very) different levels of education in statistics.
- course participants with (very) different levels of motivation.
- various topics to teach but within a (very) limited time.

 \rightarrow Teaching Statistics independently from the statistical background of the participants.

- Each course participant is going to contribute interactively to the course.
- Making theoretical concepts understandable. Interactive visualisation of any mathematical expression.
- Embedding of information about our participants into the course material to **attract interest**.
- Teaching **Robust Statistics** but also explain standard concepts (but **not** vice versa).

Virtual Book

Templ, Dinges (TUW)

Teaching Statistics With R

Boku, January. 16, 2009

Use of Data from our Participants

- Participants should identify their **own** data in examples to attract interest. (Who is the outlier?)
- **Collection** of data from the participants via E-questionnaire within the course.
- Embedding these data **automatically** in interactive examples and in the course slides in **real time**.

Visualization of Anything

- For supporting the explanation of theoretical concepts.
- The participants should not only **hear** about statistics, they should **see** it in order to **understand** it.
- We derive visually step-by-step fundamental concepts but also graphics like QQ-plots, etc. (all in all ≥ 500 plots)

Robustification of Nearly Anything

Teaching Robust Statistics

- as natural as possible because
 - virtually all of the data in Statistics Austria include outliers.
 - even course participants with good knowledge in Statistics don't know anything about it. (again: attract interest)
- to understand problems arising when standard techniques are applied.

Active Contribution of our Participants

- Don't waste time with calculations as exercises.
- Don't use one particular statistical software for exercises. (why should an SAS user use R and vice versa?)
- We considered the use of e-learning systems available through the web but we conclude that none fits within our ideas.

The Interactive Knowledge-Check (TGUI)

Former: No active contribution of the course participants. (any questions? \rightarrow silence)

Development of a specific interactive Knowledge-Check

- The **TGUI**:
 - About: Recapitulation of the previous topic by multiple choice questionnaires or interactive visualizations.
 - Why: Previous topics should be strengthend. Next topic should be motivated. Attract interest.
 - How: Interactive (and anonymously) after every 20 minutes (presentation) via mouse clicks and sliders.
 - Advantage: Feedback for both, the course presenters and the participants. How many participants have successfully solved the examples? Should we repeat something? What? No time-consuming examples which must be solved manually.
 - Interactive gaming without being stressed by exams attract interest.

Templ, Dinges (TUW)

Teaching Statistics With R

Software

- LATEX is a must, not only because of better fonts for mathematical formulas.
- ඹ is a must, not only because of its power to generate high-quality plots.
- Sweave to combine both, (R and LATEX for the dynamical generation of reports in real time.
- JGR (or GGOBI) for various interactive plots.
- ImageMagick to produce animimations.
- tcltk (or RGTK2) to implement a graphical user interface (GUI).

Input-Output

Teaching Statistics With R

Boku, January. 16, 2009 13 / 16

After the E-Questionnaire

[1.1] Am Weg zur linearen Regression

Ihre Datenmatrix:

Nr	Pseudonym	Geschl	Größe	Gew	Alter	Quelle
1	Obelix	Männl	187	125	51	Kurs
2	Karli	Männl	180	75	28	Kurs
3	Susi	Weibl	170	65	23	Kurs
4	yt	Männl	183	76	28	Kurs
5	Lisa	Weibl	168	54	32	Kurs
6	Frosch	Weibl	170	61	40	Kurs
7	Gilbert	Männl	164	62	34	Kurs
8	Maria	Weibl	154	59	54	Kurs
9	Anid	Männl	183	71	27	Kurs
10	nobody1	Männl	175	90	42	Kurs
11	Kurti	Männl	172	59	27	Kurs
12	Karfiol	Weibl	160	55	36	Kurs
13	maxi	Weibl	168	50	35	Kurs
14	Moritz	Männl	180	92	33	Kurs
15	Quasi	Männl	173	68	28	Kurs
16	Linus	Männl	183	79	46	Kurs
17	Garfield	Weibl	167	57	41	Dummy
18	IchAnonym	Weibl	178	68	39	Kurs

Matrix-Schreibweise:

n Beobachtungen (Zeilen) und p Variablen (Spalten)

$$\mathbf{D} = \begin{pmatrix} d_{11} & d_{12} & \dots & d_{1p} \\ d_{21} & d_{22} & \dots & d_{2p} \\ \dots & \dots & \dots & \dots \\ d_{n1} & d_{n2} & \dots & d_{np} \end{pmatrix}$$

Notation:

 $d_{11} \dots$ Wert in Zeile 1, Spalte 1 $d_{35} \dots$ Wert in Zeile 3, Spalte 5 $d_{.1} \dots 1$. Variable (1. Spalte) $d_{3} \dots 3$. Beobachtung (3. Zeile)

14 / 16

Quelle: ST.AT, 15. Mai 2005

Templ, Dinges (TUW)

[2.1] OLS: Diagnostik

Beispiel 5/1: Graphische Verfahren zur Analyse der Residuen e_i

Die Residuenverteilung vermittelt einen ersten Eindruck über die Güte der Prognosefunktion

Examples from the TGUI

Online . . .

- ST03 13.1
- ST03 14.1
- ST03 19.1
- ST04 E1
- ST03 8b
- ST05 OLS
- ST05 gp

Examples from the TGUI

- Education in Statistics is essential for employees of Statistics Austria.
- The education must be practical oriented and must **entertain** the employees. Note that without any possibility of giving exams for (often prior unmotivated) participants one must give a strong motivation.
- The **feedback system** is essential to check if the topics have been understood by the participants.
- All in all, our concept consists of a whole **system**, consisting not only of the TGUI.
- This concept can be applied anytime to present any topic, but a computer lab is necessary. We assume that in future for every student a computer is available during the lecture, so the concept is going to be **general**.
- The concept works the evaluation of the course is almost alway