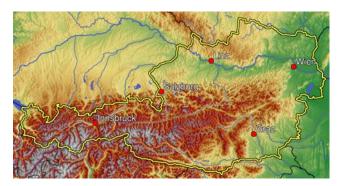

Tempolimit 80 km/h auf Landstraßen – Ein No-Go oder ein Go-into?

Wolfgang J. BERGER
Ass.Prof. Dipl.-Ing. Dr.
w.j.berger@boku.ac.at

AA Strategische Verkehrssicherheit 27.09.2022

Die oft allererste Meinung zu Tempo 80 auf Landstraßen ...



Die Realität ...

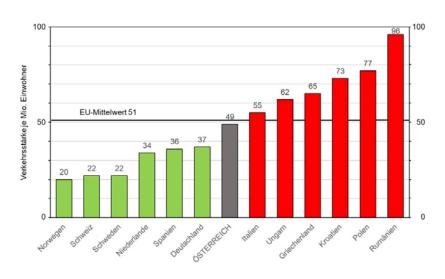
Österreich (83.879 km²):

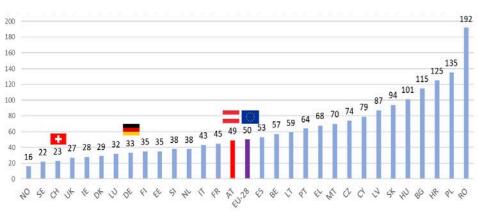
- 63% Alpen
- 11% Alpen- + Karpatenvorland
- 10% Böhmische Masse
- → über 80% sind bergig oder hügelig

die ca. 65.000 km Landstraßen sind häufig

- → kurvenreich (z.B. Salzburg: knapp 20% der L-Straßen im Freiland sind Bögen mit R ≤ 150 m) und/oder
- → schmal (z.B. Burgenland: rund ²/₃ der L-Straßen im Freiland haben Fahrbahnbreiten ≤ 6,0 m) und/oder
- → stark kupiert

Quelle: Berger W. J. (2007): Potenziale der Einführung von Tempolimit 80 km/h auf Landstraßen in Österreich. Straßenverkehrstechnik 8.2007 (S. 409-416)

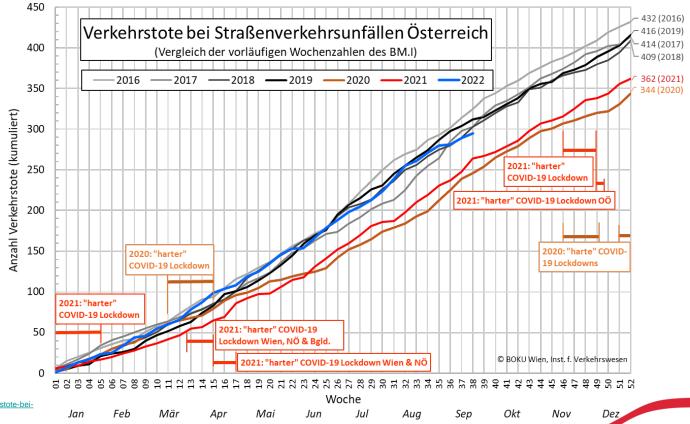




Verkehrssicherheit – Österreich nur mittelmäßig

Getötete pro Mio. Einwohner 2019

Getötete pro 10 Mrd. Kfz-km 2017



Quelle: EU Statistical Pocketbook 2019, IRTAD Annual Report 2019

Verkehrssicherheit – Keine Verbesserung in Sicht

Getötete in Österreich (Stand 25.09.2022)

→ Keine Änderung gegenüber den Jahren vor COVID

Quelle (wöchentlich aktualisiert): https://boku.ac.at/rali/verkehr/wei

https://boku.ac.at/rali/verkehr/weitere-news/verkehrstote-beistrassenverkehrsunfaellen-in-oesterreich

Verkehrssicherheit – Unfallkosten

<u>Personenschäden:</u> Medizinische Behandlungskosten, Verlust an Leistungspotenzial (durch unfallbedingten Krankenstand), Wert des menschlichen Leids (abzüglich nicht getätigter Konsumtion)

Sachschäden: Kosten von Fahrzeugschäden, Wertminderung, Infrastrukturschäden, ...

<u>Gemeinkosten</u>: Verwaltungskosten der Versicherungen, Polizei-, Rettungs-, Notarzthubschrauber-, Feuerwehrkosten, Rechtskosten, Zeitverluste (durch unfallbedingte Stauerscheinungen), sonstige Haftpflichtleistungen

Volkswirtschaftliche Kosten von Straßenverkehrsunfällen in Österreich (Stand 2016)

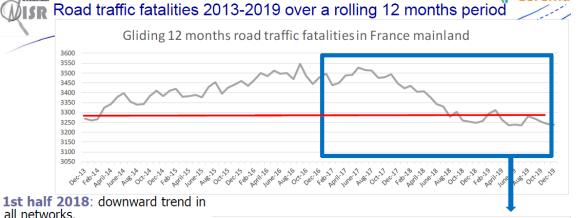

Volkswirtschaftliche Unfallkostenwerte für Österreich	Unfallschwere	Unfallkosten	Unfallkosten inkl. "menschlichem Leid"	
(Basisjahr 2016)	1 getötete Person 1 schwer verletzte Person 1 leicht verletzte Person 1 Sachschaden	€1.390.800,- €87.100,- €4.200,- €5.500,-	€3.316.300,- €429.500,- €30.600,-	
Gesamt	Straßenverkehrsunfälle in Österreich in 2016	€5.203.000.000	€9.701.000.000	

→ fast 1.100 €pro Einwohner/in (!)

Quelle: Sedlacek N., Steinacher I., Mayer B., Aschenbrenner A. (2017): Unfallkostenrechnung Straße 2017. Forschungsarbeiten des österreichischen Verkehrssicherheitsfonds, Band 065, Wien.

Tempolimits auf Landstraßen

→ Tempo 100 auf Landstraßen NURMEHR in Deutschland und Österreich

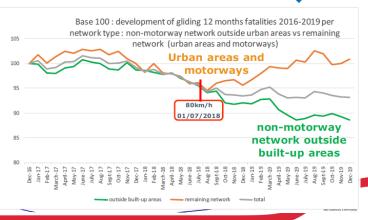

Quelle: https://www.bussgeld-info.de/tempolimit-europa/

Erfahrungen aus Frankreich

Frankreich:
Ergebnis nach Einführung
Tempo 80 km/h
(statt 90 km/h)
am 01. Juli 2018:

→ deutliche Abnahme der Getötetenzahlen auf Landstraßen

Quelle: CEREMA (2020): Final evaluation of 80 km/h speed limit on single carriageway roads outside built-up areas. French Road Safety Observatory, Final Report.



2nd half 2018: trends split: gain of 125 lives* on rural roads, 17 lives* on other networks.

1st half 2019: 76 lives* gained on rural roads, but 52 fatalities more* on other networks.

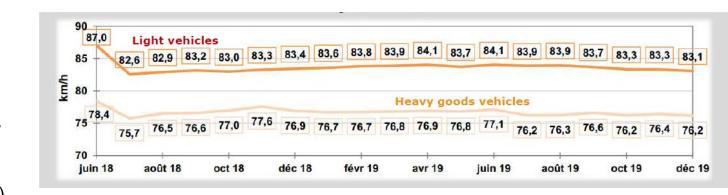
2nd half 2019 : gain of 130 lives* on rural roads, 10 lives* on other networks = 2nd half 2018.

*compared to the average per half year of the 5 years 2013-2017 (reference)

Erfahrungen aus Frankreich

Frankreich: Nach anfänglicher Skepsis stieg die Akzeptanz

→ "Gewohnheitseffekt"



Quelle: CEREMA (2020): Final evaluation of 80 km/h speed limit on single carriageway roads outside built-up areas. French Road Safety Observatory, Final Report.

Erfahrungen aus Frankreich

Frankreich: Nach Einführung Tempo 80 km/h:

→ Rückgang mittlere Geschwindigkeit Pkw auf Landstraßen um rund 3 bis 4 km/h (Lkw rund 1 bis 3 km/h)

Quelle: CEREMA (2020): Final evaluation of 80 km/h speed limit on single carriageway roads outside built-up areas. French Road Safety Observatory, Final Report.

10

Erfahrungen aus der Schweiz

Zusammenfassung und Folgerungen

Schweiz: Ergebnis nach Einführung Tempo 80 km/h (1985 bis 1989 provisorisch, seit 1990 definitiv)

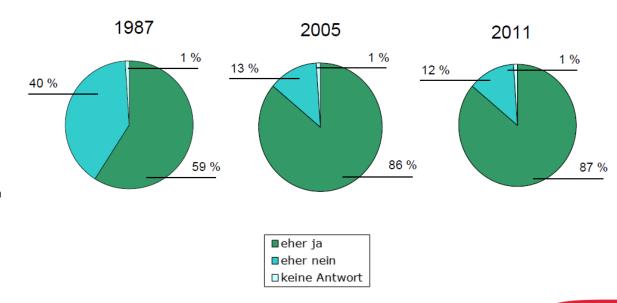
Quelle: Allenbach R. (2015): Tempo 80 auf Landstraßen in der Schweiz – Verkehrssicherheitsperspektive. Fachvortrag – Strategien für sicheren und umweltfreundlichen Verkehr: Temporeduktion auf Landstraßen? Wien, 19 11 2015

Positive Effekte im Verkehrsablauf

- Reduktion der gefahrenen Geschwindigkeiten
- Harmonisierung des Geschwindigkeitsverhaltens
- Keine Veränderungen im Abstandsverhalten

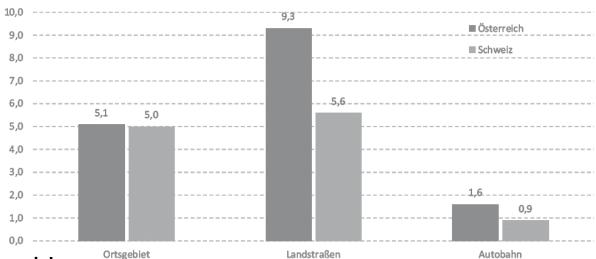
Positive Effekte im Unfallgeschehen

- Reduktion der Anzahl Verletzter: ~10%
- Reduktion der Verletzungsschwere: ~7%
- Reduktion der Anzahl Getöteter: ~17%
- Hohe Akzeptanz durch die Verkehrsteilnehmer


Erfahrungen aus der Schweiz

Akzeptanz der Tempolimite 80 auf Landstraßen

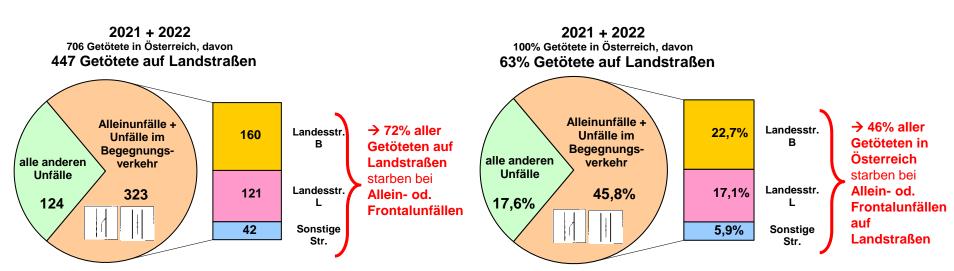
Schweiz: Nach anfänglicher Skepsis stieg die Akzeptanz rasch


→ "Gewohnheitseffekt"

Quelle: Allenbach R. (2015): Tempo 80 auf Landstraßen in der Schweiz – Verkehrssicherheitsperspektive. Fachvortrag – Strategien für sicheren und umweltfreundlichen Verkehr: Temporeduktion auf Landstraßen? Wien, 19.11.2015

Vergleich Getötetenrate Schweiz – Österreich

Todesopfer pro Mrd. Kfz-km nach Ortslage: Durchschnitt der letzten fünf verfügbaren Jahre 2013 bis 2017



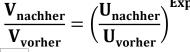
Schweiz - Österreich:

- → im Ortsgebiet ≈ ident
- → auf Landstraßen in Ö um zwei Drittel höher(!!)
- → auf Autobahnen in Ö um drei Viertel höher (allerdings geringe Absolutzahlen)

Quelle: Furian G., Kaiser S., Machata K. (2019): Schweiz und Österreich – Zwei ungleiche Nachbarn in der Verkehrssicherheit. ZVR (2019) 07/08 (S. 272-278)

Getötete auf Österreichs Landstraßen




Tödliche Allein- od. Frontalunfälle → höchstwahrscheinlich mit hoher Geschwindigkeit

- → Fast zwei Drittel aller Getöteten in Österreich (63%) sterben auf Landstraßen,
- → davon fast drei Viertel bei Allein- oder Frontalunfällen (72%).
- → Fast die Hälfte aller Getöteten in Österreich (46%) sterben bei Allein- oder Frontalunfällen auf Landstraßen!

Zusammenhang Geschwindigkeit – Unfallgeschehen

Zunehmende Fahrgeschwindigkeit erhöht (weit überproportional!) die Unfallschwere:

V ... durchschnittliche Geschwindigkeit

Exponenten für Außerortsstraßen:

U ... Unfallanzahl / Unfallfolgen

tödl. Verletzte (Exp. = 4.6) schwer Verletzte (Exp. = 3.5)

leicht Verletzte (Exp. = 1.4)

alle UPS (Exp. = 1,6)

alle USS (Exp. = 1,5)

Beispiel:

LEDIGLICH minus 5% Durchschnittsgeschwindigkeit lassen erwarten

- → 7% weniger Unfälle mit nur Sachschaden
- → 8% weniger Unfälle mit Personenschaden
- → 7% weniger leicht Verletzte
- → 16% weniger schwer Verletzte
- → 21% (!!) weniger Getötete

Quelle: Elvik R. (2013): A re-parameterisation of the Power Model of the relationship between the speed of traffic and the number of accidents and accident victims. Accident Analysis and Prevention (50) 2013, 854-860

% 5%

Änderung der mittleren Fahrgeschwindigkeit in %

tödl. Verletzte

- - - leicht Verletzte

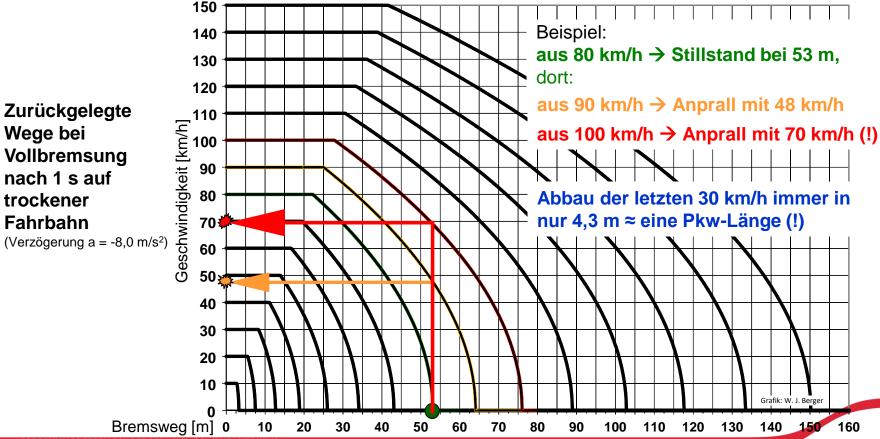
alle USS

----alle UPS

Änderung der Anzahl der Verunglückten

oder der Unfälle in

-10


-15

-20

-30 -35

-40 -45 schwer Verletzte

Fahrgeschwindigkeit – Anprallgeschwindigkeit

Umwelteffekte (Schadstoffausstoß)

Größenordnungen der wichtigsten Effekte von Tempolimits (PKW, 2015) anhand HBEFA3.2:

z.B. T100 → T80	NOx	CO2	PM10 mot.
Fern-, Bundesstraße	-20%	-4%	-15%
Hauptverkehrsstraße	-20%	-7%	-8%
Hauptverkehrsstraße kurvig	-10%	-6%	-6%

Quelle: Peter Sturm, Martin Rexeis, Stefan Hausberger (2015): Temporeduktion auf Landstraßen Aspekte der Umweltbelastung – Luftschadstoffe. Fachvortrag: Strategien für sicheren und umweltfreundlichen Verkehr: Temporeduktion auf Landstraßen? Wien, 19.11.2015

			Beobachtetes Verhalten				heute	Trend
Pkw								
	Ortsgebiet	30	<u>(</u> 0	34,3 km/h	nit	28,4%	e	→
Geschwindigkeit (2016-2018)		60	uitts- eit (v50)	49,1 km/h	Tempolimit	56,3%	4	,
	Freiland	<u> </u>	nschnitts-	67,9 km/h		59,7%	4	→
		80	Durc geschwii	73,0 km/h	Einhaltung	76,0%	<u> </u>	j.
		<u> </u>	p0	84,4 km/h	Ein	84,9%	<u> </u>	*

Quelle: KfV (2019): Verkehrssicherheitsreport - Sicherheitsniveau und Trends im Straßenverkehr Österreich 2019

von durchschnittlich 84,4 km/h auf 73,0 km/h (= -13%):

→ - 6,7 s/km (allerdings nur bei ausreichend gestreckter Linienführung und einigermaßen freier Fahrt)

Beispiel: Zeit-Weg-Bedarf für Beschleunigen nach 50 km/h-Limit & Wiederabbremsen vor 70 km/h-Limit

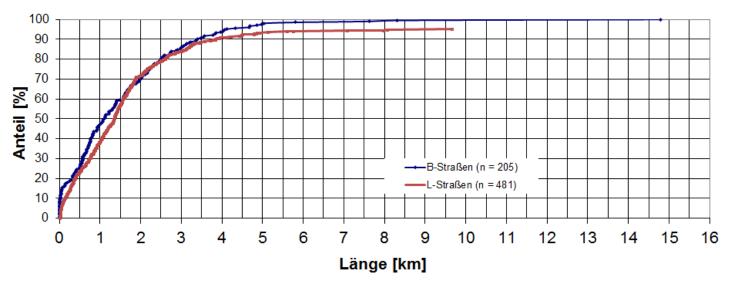
Musterstadt beschleunigen	auf 100 (a = 1 m/s ²)	fahren mit 100	bremsen 70 Summe auf $(a = -1,5 \text{ m/s}^2)$	Differenz Limit
von	289 m	0 s	131 m 420 m	
V _{zul} 50 km/h	13,9 s	0 m	5,6 s 19,5 s	

→ "normales" Fahrverhalten: von 50 auf 100 km/h und zurück auf 70 km/h braucht es ~ 400 m

Beispiel: Zeit-Weg-Bedarf für Beschleunigen nach 50 km/h-Limit & Wiederabbremsen vor 70 km/h-Limit

Musterstadt beschleunigen	auf 100 (a = 1 m/s ²)	auf 80 (a = 1 m/s ²)			bremsen 70 auf $(a = -1,5 \text{ m/s}^2)$	Summe	Differenz Limit
von V _{zul} 50 km/h	289 m 13,9 s		0 s 0 m		131 m 5,6 s	420 m 19,5 s	
		150 m 8,3 s		231 m 10,4 s	39 m 1,9 s	420 m 20,6 s	für 420 m → (nur) 1,1 s

→ Zeitverlust mit 80 km/h nach ~ 400 m ist marginal (1,1 s subjektiv nicht wahrnehmbar)

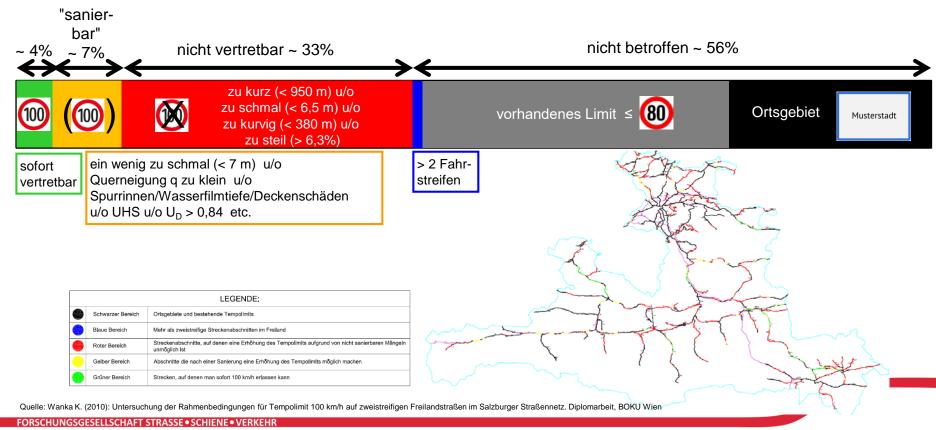

Beispiel: Zeit-Weg-Bedarf für Beschleunigen nach 50 km/h-Limit & Wiederabbremsen vor 70 km/h-Limit

Musterstadt beschleunigen	auf 100 (a = 1 m/s ²)	auf 80 (a = 1 m/s ²)	fahren mit 100	fahren 80 mit	bremsen 70 auf $(a = -1,5 \text{ m/s}^2)$	Summe	Differenz Limit
von V _{zul} 50 km/h	289 m 13,9 s		0 s 0 m		131 m 5,6 s	420 m 19,5 s	
		150 m 8,3 s		231 m 10,4 s	39 m 1,9 s	420 m 20,6 s	für 420 m → (nur) 1,1 s
	289 m 13,9 s		580 m 20,9 s		131 m 5,6 s	1.000 m 40,4 s	
		150 m 8,3 s		811 m 36,5 s	39 m 1,9 s	1.000 m 46,7 s	für 1.000 m → 6,3 s

→ Zeitverlust auch nach 1 km nur wenige Sekunden

Abschnittslängen

Burgenland:
Abschnittslängen von Landesstraßen B und L im Freiland mit Tempolimit 100 km/h (Stand Okt. 2006)



→ Knapp die Hälfte aller Abschnitte mit Tempolimit 100 km/h sind kürzer als 1 km

Quelle: Berger W. J.; eigene Auswertungen gem. Land Burgenland 2006

Beispiel Land Salzburg:

Wo wäre bei Tempolimit 80 km/h die Anhebung auf 100 km/h vertretbar?

Resümee

Die FSV empfiehlt für Landstraßen:

- ✓ Senken des generellen Tempolimits auf 80 km/h
- ✓ Anhebung auf 100 km/h auf dafür geeigneten Straßen
- → Die effektivste UND effizienteste Maßnahme zur Verbesserung der Unfallbilanz
- → Ein Beitrag zum Umwelt- und Klimaschutz

Ö S T E R R E I C H I S C H E FORSCHUNGSGESELLSCHAFT STRASSE • SCHIENE • VERKEHR Wir finden neue Wege.

Wolfgang J. BERGER

Ass.Prof. Dipl.-Ing. Dr.

w.j.berger@boku.ac.at

Institut für Verkehrswesen

AA Strategische Verkehrssicherheit 27.09.2022