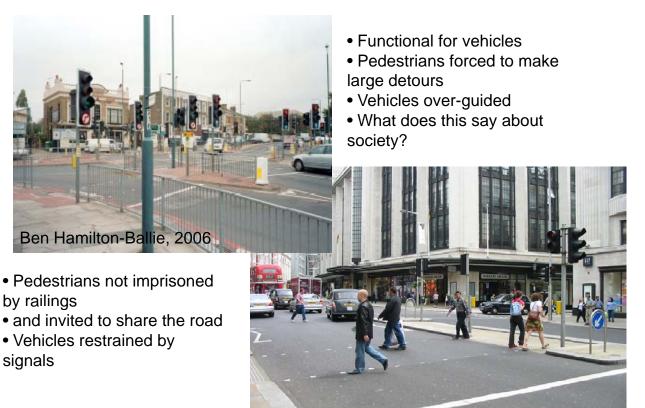
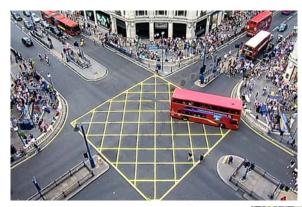
Shared surfaces: Travel demand unmanaged

TDM2008, Semmering, Austria

Professor Michael G H Bell Civil and Environmental Engineering Imperial College London


Segregation: Buchanan (1963)

Flg. 4. Illustrations from Colin Buchanan's seminal 1963 report Traffic in Towns, showing vehicles segregated from pedestrians (Crown copyright)


- Division of the public realm into parallel universes
- Emphasis on freedom of movement for the vehicle (hence Traffic in Towns)
- Orthodoxy widespread at the time

Desegregation: Kensington High St

Designing Streets for People, 2003

Desegregation: Oxford Street

- Pedestrians penned in by railings
- and either making big detours
- or crossing in non-designated areas
- Yellow box excludes
- pedestrians as well as vehicles

Pedestrians are invited to share the centre of the junction
and to cross diagonally

"Naked streets": The concept

- Attributed to the late Hans Monderman, who
 - Believed in the anti-social consequences of segregation
 - Designed first "naked streets" in the Netherlands, where vehicles and pedestrians share the road and where traffic lights, barriers and signs are stripped out

Issues: New Road, Brighton

- Pedestrians reclaimed the street
- Vehicles give ways to pedestrians
- Road safety audit (MVA) identified problems with
 - Blocking tactile strip
 - Risk of collision with seating
 - Lighting


The balanced view

- Advantages
 - Traffic calming effect
 - Hazards clearly visible
 - Aesthetics (looks better?)
 - Health (encourages walking and cycling)

- Disadvantages
 - Difficult for people with handicaps
 - Safety for children
 - Equity (can elderly cross?)
 - Pedestrian exposure to emissions

Blackett Street, Newcastle

- Key features
 - High pedestrian density
 - Paving
 - Blister paving
 - Low kerbs

Source: Graham Smith

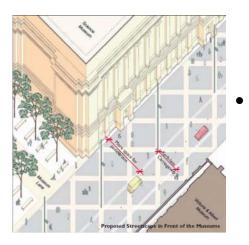
Willem Straat, Rijswijk

- Key features

 Linked zones
 - Discontinuous carriageway, not obviously aligned
 - Footway shielded by parked vehicles

Rijstraatweg, Haren

- Key features
 - Carriageway alignment bounded by trees, lighting columns and railings
 - Zebra stripes offering some protection to pedestrians


Source: Graham Smith

Exhibition Road, London

Exhibition Road, design

- Design issues
 - Provision for disability, children, elderly?
 - Channel for vehicles?
 - Designated crossing areas?
 - Sustainable traffic and pedestrian flows?

- Design issues (cont)
 - Materials, signage and traffic signals?
 - Use of ITS?
 - Provision for buses

Towards a shared surface theory

- Pedestrians need gaps in the vehicle flow to cross
- Vehicles need gaps in the pedestrian flow to proceed
- Traffic will be calmed by pedestrians

Open questions

- How do pedestrians affect vehicle speed?
- How is pedestrian gap acceptance affected by vehicle speed?
- At what level of vehicle flow does the surface cease to be shared?

Mutual gap acceptance

 $Pr(accept_p) = Pr(gap_c > crit_p) = e^{-\lambda_c crit_p}$

 $\Pr(accept_c) = \Pr(gap_p > crit_c) = e^{-\lambda_p crit_c}$

 $\lambda_c = \text{Flow of vehicles [veh/s]}$

 λ_p = Flow of pedestrians [ped/s]

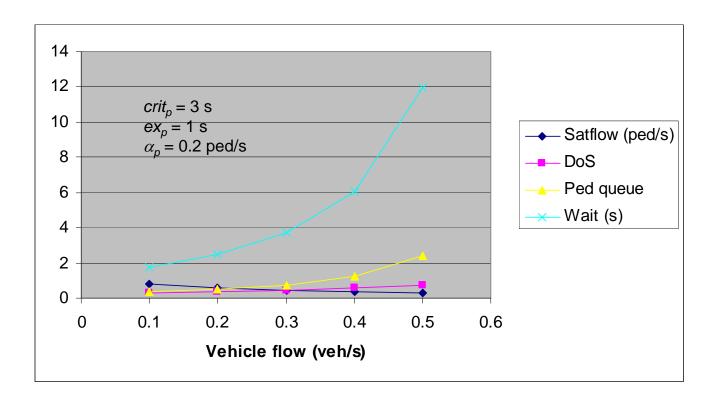
crit_c = Critical gap for vehicles [s/veh]

 $crit_p$ = Critical gap for pedestrians [s/ped]

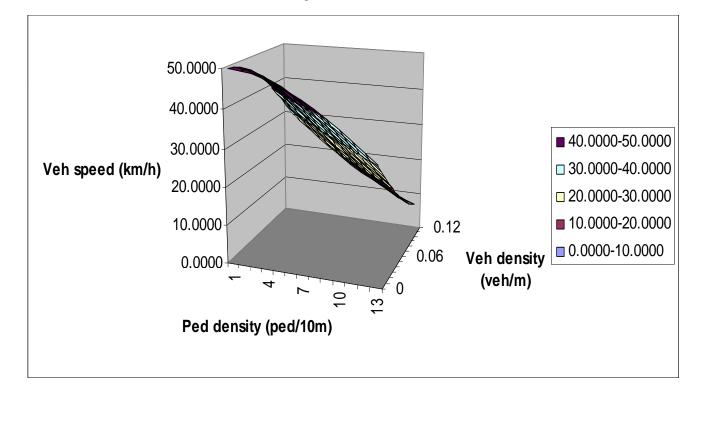
$$\lambda_p = \lambda_c e^{-\lambda_c crit_p}$$

 $\lambda_c = \lambda_p e^{-\lambda_p crit_c}$

Pedestrian queue


$$\begin{aligned} \Pr(a_{p} = 1) &= \Pr(crit_{p} < gap_{c} < crit_{p} + ex_{p}) = e^{-\lambda_{c}crit_{p}} - e^{-\lambda_{c}(crit_{p} + ex_{p})} \\ \Pr(a_{p} = 2) &= \Pr(crit_{p} + ex_{p} < gap_{c} < crit_{p} + 2ex_{p}) = e^{-\lambda_{c}(crit_{p} + ex_{p})} - e^{-\lambda_{c}(crit_{p} + 2ex_{p})} \\ \text{etc.} \\ \lambda_{p} &= \lambda_{c}(\Pr(a_{p} = 1) + 2\Pr(a_{p} = 2) + 3\Pr(a_{p} = 3) + ...) \\ &= \lambda_{c}e^{-\lambda_{c}crit_{p}}(1 + e^{-\lambda_{c}ex_{p}} + e^{-2\lambda_{c}ex_{p}} + ...) = \frac{\lambda_{c}e^{-\lambda_{c}crit_{p}}}{1 - e^{\lambda_{c}ex_{p}}} \\ \lambda_{c} &= \text{Flow of vehicles [veh/s]} \\ \lambda_{p} &= \text{Flow of pedestrians [ped/s]} \\ crit_{p} &= \text{Critical gap for pedestrians [s/ped]} \end{aligned}$$

 ex_p = Time required for an extra pedestrian to cross


Pedestrian waiting time

 α_p = Pedestrian arrival rate $\sigma_p = \frac{\alpha_p}{\lambda_p}$ = Pedestrian degree of saturation $q_p = \frac{\sigma_p}{1 - \sigma_p}$ = Mean pedestrian queue size $w_p = \frac{q_p}{\alpha_p}$ = Mean pedestrian wait

How difficult is it to cross?

How do pedestrians affect vehicle speeds?

Conclusions

- There is a case for the "naked street", but there is a spectrum of nakedness
- There are important design issues still to be resolved
- There are limits to the applicability of shared surfaces
- Important traffic engineering relationships need to be researched