Shared surfaces: Travel demand unmanaged

TDM2008, Semmering , Austria

Professor Michael G H Bell
Civil and Environmental Engineering Imperial College London

Segregation: Buchanan (1963)

Fig. 4. Illustratons from Colln Buchanan's seminal 1963 report Trafic I/ Towns, showing vehicles segregated from pedestrians (Crown copyright)

- Division of the public realm into parallel universes
- Emphasis on freedom of movement for the vehicle (hence Traffic in Towns)
- Orthodoxy widespread at the time

Desegregation: Kensington High St

- Functional for vehicles
- Pedestrians forced to make large detours
- Vehicles over-guided
- What does this say about society?
- Pedestrians not imprisoned by railings
- and invited to share the road
- Vehicles restrained by signals

Designing Streets for People, 2003

Desegregation: Oxford Street

- Pedestrians penned in by railings
- and either making big detours
- or crossing in non-designated areas
- Yellow box excludes
pedestrians as well as vehicles
- Pedestrians are invited to share the centre of the junction - and to cross diagonally

"Naked streets": The concept

- Attributed to the late Hans Monderman, who
- Believed in the anti-social consequences of segregation
- Designed first "naked streets" in the Netherlands, where vehicles and pedestrians share the road and where traffic lights, barriers and signs are stripped out

Issues: New Road, Brighton

- Pedestrians reclaimed the street
- Vehicles give ways to pedestrians
- Road safety audit (MVA) identified problems with
- Blocking tactile strip
- Risk of collision with seating
- Lighting

The balanced view

- Advantages
- Traffic calming effect
- Hazards clearly visible
- Aesthetics (looks better?)
- Health (encourages walking and cycling)
- Disadvantages
- Difficult for people with handicaps
- Safety for children
- Equity (can elderly cross?)
- Pedestrian exposure to emissions

Blackett Street, Newcastle

- Key features
- High pedestrian density
- Paving
- Blister paving
- Low kerbs

Willem Straat, Rijswijk

- Key features
- Linked zones
- Discontinuous carriageway, not obviously aligned
- Footway shielded by parked vehicles

Rijstraatweg, Haren

- Key features
- Carriageway alignment bounded by trees, lighting columns and railings
- Zebra stripes offering some protection to pedestrians

Exhibition Road, London

Exhibition Road, design

- Design issues
- Provision for disability, children, elderly?
- Channel for vehicles?
- Designated crossing areas?
- Sustainable traffic and pedestrian flows?

- Design issues (cont)
- Materials, signage and traffic signals?
- Use of ITS?
- Provision for buses

Towards a shared surface theory

- Pedestrians need gaps in the vehicle flow to cross
- Vehicles need gaps in the pedestrian flow to proceed
- Traffic will be calmed by pedestrians

Open questions

- How do pedestrians affect vehicle speed?
- How is pedestrian gap acceptance affected by vehicle speed?
- At what level of vehicle flow does the surface cease to be shared?

Mutual gap acceptance

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { accept }_{p}\right)=\operatorname{Pr}\left(\text { gap }_{c}>\text { crit }_{p}\right)=e^{-\lambda_{c} c r i t_{p}} \\
& \operatorname{Pr}\left(\text { accept }_{c}\right)=\operatorname{Pr}\left(\text { gap }_{p}>\text { crit }_{c}\right)=e^{-\lambda_{p} \text { crit }} c \\
& \lambda_{c}=\text { Flow of vehicles [veh/s] } \\
& \lambda_{p}=\text { Flow of pedestrians [ped/s] } \\
& \text { crit }=\text { Critical gap for vehicles [s/veh] } \\
& \text { crit }_{p}=\text { Critical gap for pedestrians [s/ped] }
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{p}=\lambda_{c} e^{-\lambda_{c} c r i t_{p}} \\
& \lambda_{c}=\lambda_{p} e^{-\lambda_{p} c r i t_{c}}
\end{aligned}
$$

Pedestrian queue

$\operatorname{Pr}\left(a_{p}=1\right)=\operatorname{Pr}\left(\right.$ crit $_{p}<$ gap $_{c}<$ crit $\left._{p}+e x_{p}\right)=e^{-\lambda_{c} c r i t_{p}}-e^{-\lambda_{c}\left(c r i t_{p}+e x_{p}\right)}$
$\operatorname{Pr}\left(a_{p}=2\right)=\operatorname{Pr}\left(\right.$ crit $_{p}+e x_{p}<$ gap $_{c}<$ crit $\left.\left._{p}+2 e x_{p}\right)=e^{-\lambda_{c}\left(\text { crit }_{p}+e x_{p}\right)}-e^{-\lambda_{c}(\text { crit }}+2 e x_{p}\right)$
etc.

$$
\begin{gathered}
\lambda_{p}=\lambda_{c}\left(\operatorname{Pr}\left(a_{p}=1\right)+2 \operatorname{Pr}\left(a_{p}=2\right)+3 \operatorname{Pr}\left(a_{p}=3\right)+\ldots\right) \\
=\lambda_{c} e^{-\lambda_{c} c r i t_{p}}\left(1+e^{-\lambda_{c} e x_{p}}+e^{-2 \lambda_{c} x_{p}}+\ldots\right)=\frac{\lambda_{c} e^{-\lambda_{c} c r i t_{p}}}{1-e^{\lambda_{c} e x_{p}}} \\
\lambda_{c}=\text { Flow of vehicles [veh/s] } \\
\lambda_{p}=\text { Flow of pedestrians [ped/s] } \\
c r i t_{p}=\text { Critical gap for pedestrians [s/ped] } \\
e x_{p}=\text { Time required for an extra pedestrian to cross }
\end{gathered}
$$

Pedestrian waiting time

$\alpha_{p}=$ Pedestrian arrival rate
$\sigma_{p}=\frac{\alpha_{p}}{\lambda_{p}}=$ Pedestrian degree of saturation
$q_{p}=\frac{\sigma_{p}}{1-\sigma_{p}}=$ Mean pedestrian queue size
$w_{p}=\frac{q_{p}}{\alpha_{p}}=$ Mean pedestrian wait

How difficult is it to cross?

How do pedestrians affect vehicle speeds?

Conclusions

- There is a case for the "naked street", but there is a spectrum of nakedness
- There are important design issues still to be resolved
- There are limits to the applicability of shared surfaces
- Important traffic engineering relationships need to be researched

