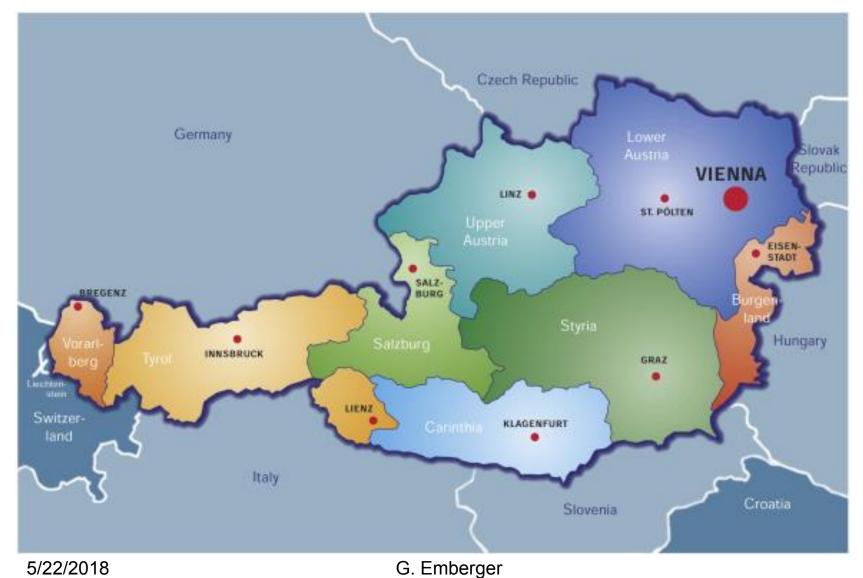


Introduction Research Center of Transport Planning and Traffic Engineering


Faculty of Civil Engineering Institute of Transportation

G. Emberger

Vienna, 2018

Where is Austria?

Basic facts Austria - Vienna

Capital and largest city Official language Ethnic groups (2011) Area			Vienna (1,8 mio inhabitants)German•81.1% Austrians ^[2] •7.0% ex-Yugoslavs•4.0% Turks•7.9% other83,855 km² (115 th)								
						Population	2011	estimate	8,414,638 (92 nd) 100.3/km ² (107 th)		
							Dens	sity	100.3/km ² (107 th)		
						GDP (nomina	al) 20 ⁻	12 estimate per capita	\$47,083		
Currency			Euro (€)								
Motorisation rate		Vienna [cars/1000 inh.]	385								
		Austria [cars/1000 inh.]	537	100%							
Modal split		Vienna		■ car							
		Walking & Cycling / pt / car	33 / 36 / 31	50%							
		Austria		0% ■w&c							
		Walking & Cycling / pt / car	32 / 17 / 51	Vienna Austria							

Vienna University of Technology

- founded 1815
- 4.500 staff
- 27.000 students
- 9 faculties
- 250 mio € turnover
- 70 mio € project funding
- more info at <u>www.tuwien.ac.at</u>

Faculty of civil engineering

- 140 staff
- 2.000 students
- more info at <u>www.bauwesen.tuwien.ac.at</u>

Transportation

Institute of **Transportation**

Head: Univ.Prof. Dipl.-Ing. Dr.techn. Ronald Blab

Research Center of Railway Engineering, Traffic Economics and Ropeways Head: Univ.Prof. Dipl.-Ing. Dr.techn. Norbert Ostermann

Research Center of **Road Engineering**

Head: Univ.Prof. Dipl.-Ing. Dr.techn. Ronald Blab

Research Center of

Transport Planning and Traffic Engineering

Head: Univ.Prof. Dipl.-Ing. Dr.techn. Josef Michael Schopf

Overview TUW-IVV

Staff

 Professors: Guenter Emberger (Head since 2017) Thomas Macoun Josef Michael Schopf (retired 2017) Hermann Knoflacher (em. since 2008)

• Office: Angelika Haller

 Assistants: Brezina, Dimova, Frey, Lemmerer, Leth, Pfaffenbichler, Ripka, Shibayama, Winder

Ph.D. Students: Wejwithan, Aminian, Validi

FVV stands for interdisciplinary mobility research for a human development towards sustainability

- People and their environment are the basis of our work
- We aim for a broad understanding of transport planning, including
 - ecological,
 - social,
 - psychological,
 - economical and
 - technical aspects,

and taking into account interrelations and feedbacks

We combine

Introduction – projects at TUW-IVV

- Since 2008 the Research Center has worked on
 - more than 50 international projects and
 - more than 160 national projects
 - more than 90 transport master plans since the 1970ies.
 - memberships in more than 15 national and international research networks
- An overview and links to further information could be found on our webpage:
 - <u>www.ivv.tuwien.ac.at/forschung/projekte/international-projects.html</u>
 - <u>www.ivv.tuwien.ac.at/forschung/projekte/nationale-projekte.html</u>

Research Topics

- E- mobility,
- sustainable transport,
- cycling, active mobility, public transport,
- travel behaviour studies surveys,
- land use and transport interaction modelling,
- 4-stage-transport-modelling,
- GHG- modelling,
- transport master plans and assessment,
- freight transport, E-delivery concepts
- barrier free public spaces
- etc.

Research international

11

Co-operation with more than 230 research institutions in Europe and worldwide through international research

Why did we start doing SD?

- 1992 1994 work together with Dennis Meadows (Club of Rome, Limits to Growth)
- 1993 started to learn SD modelling on my own, using STELLA/ITHINK
- 1996 first SD lecture for students
- 1998 training course to become a System Thinker (Dennis Meadow, Fish banks trainer in Bonn (GER))
- 1997 first prototype of LUTI model (this time sketch planning model in Excel/VB (Igor Ripka/ Paul Pfaffenbichler)

Why did we start doing SD?

- 1998 met and made an liaison with Guenther Ossimitz (1958 – 2013) – SD Mega Link List (<u>http://archive.is/FcjU</u>)
- 1998 2002 Irregular meetings to exchange ideas/knowledge
 - founding of <u>www.systemdenken.at</u> not existing anymore
 - Just for fun we organised beer games Ottokringer
 Brewery 2001, Schleppe Brewery 2002 (biggest beer game in the world ~ 100 gamers simultaneously)
 <u>http://beergame.uni-klu.ac.at/event.htm</u>
- Peak of the Austrian System Thinking group in 2002 the group dissolved (reasons Guenther Ossimitz became serious ill, I was in UK, the others were either students or 22.05.2018 not involved enough) affenbichler, G. Emberger

- 1995 -1999 made the underlying modelling work for SPM/MARS in my thesis, finished 1999, using CLD
 - developed some methodology to asses CLDs such as: path number analyses, path length analyses, path orientation analyses, Path time duration/delay analyses, some attempt of identification of dominating loops
- 1998 2001 together with Paul Pfaffenbichler improved existing VBA SPM (OPTIMA, FATIMA, PROSPECTS)
- 2002-2004 guest researcher at ITS Leeds, convincing PP, SS to switch from VBA to VENSIM + need for Acronym →MARS was born

since 2004 till today

- series of MARS applications worldwide
- MARS improvements (more means of transport, intra zonal traffic handling, dynamic GIS mapping tool, utilization of VENSIM in-built optimizer for calibration, policy optimization, etc)
- more modelling work and new model developments, mainly from PP – more info on following slides

Education / lectures

Since 1996 regular student lectures – "Computer aided methods for solving complex problems – Causal loop diagramming, SD-modelling using Stella and Vensim"

- to introduce the concept of "sytems thinking"
- to be able depict mental models and make them discussable
- to show the difference of qualitative and quantitative system modelling
- to develop own SD-models

More info could be found at http://www.ivv.tuwien.ac.at/lehre/archiv-studentenarbeiten/ue-regelkreisbasierte-simulationsmethoden/

• Academic and real world modelling case studies

22.05.2 more details later

We are using VENSIM for our research because of:

- STELLA/ITHINK were not able to handle more dimensional data (arrays –needed in transport planning (OD-matix, trip purpose, time of the day, means of transport)
- There is a free VENSIM version available for students
- It is relatively easy to learn (lot of examples, good handbook, intuitive understandable, own experience at IVV)
- Has an in-build optimizer tool (can be used for parameter estimation, calibration, optimization, etc...)
- Interface to Excel easy data holding for underlying models
- More information can be found at http://vensim.com/

Portfolio of System Dynamics models at TUW-FVV

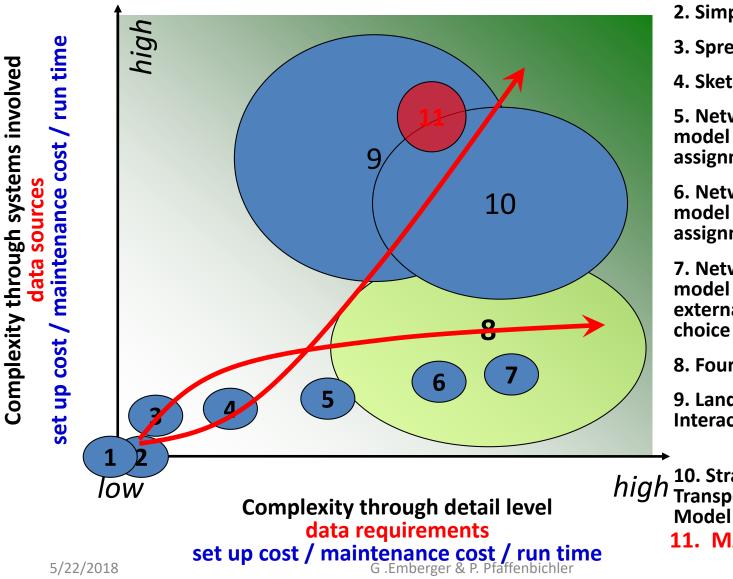
Торіс	Acronym	
Land use and transport interaction	MARS	ars
Long distance leisure and business travel	LUNA	
Market penetration electric propulsion technologies	SERAPIS	
Indirect rebound effects between transport, heating & appliances	URANUS	

- Start of development: 2000
- Topic: Strategic land use and transport interaction modeling
- Coverage: different versions from local (cities) to national (Austria), first version Vienna subdivided into 23 zones
- Background: proSpects
- Link:

www.ivv.tuwien.ac.at/forschung/mars-metropolitan-activity-relocation-simulator

• Overview case studies (>25)

MARS Applications – case studies


Gateshead, Leeds, Edinburgh (GBR)	3
Oslo, Trondheim (NOR)	2
Helsinki (FIN),	1
Vienna, Salzburg, Eisenstadt, Carinthia, Austria (AUT)	4
Madrid (ESP),	1
Stockholm (SWE),	1
Ho Chi Minh City, Hanoi (VIN)	2
Chiang Mai (THA), Ubon Ratchantani (THA)	2
Washington DC (USA),	1
Porto Alegre (BRA),	1
Bari (ITA),	1
Mulhouse (FRA), Straßbourgh (FRA)	2
Niigata (JPN)	1

- Modes of transport: Walking, Cycling, Motorcycle, Private car (ice & bev), Bus/coach, Railway, Informal PT (Tuk Tuk, etc.)
- Trip purposes: Commuting, Others
- Main Sub-Models/Modules:
 - a travel demand model,
 - a household location model,
 - a workplace location model model,
 - a policy definition user interface,
 - a module calculating process and evaluation indicators and
 - an dynamic GIS mapping tool for spatial temporal visualization.
- Time horizon: typically 30 years in steps of ¼ years

Model Classification

- 1. No model
- 2. Simple cost based
- 3. Spreadsheet model
- 4. Sketch planning model

5. Network assignment model without elastic assignment

6. Network assignment model with elastic assignment

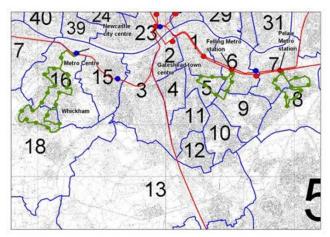
7. Network assignment model in conjunction with external demand / modechoice model

8. Four stage models

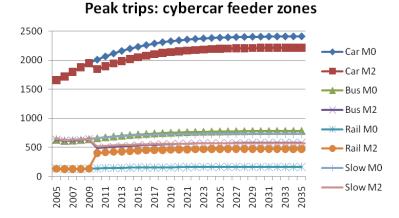
9. Land-use Transportation Interaction (LUTI) model

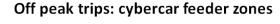
high 10. Strategic Transport/Environment Model 11. MARS

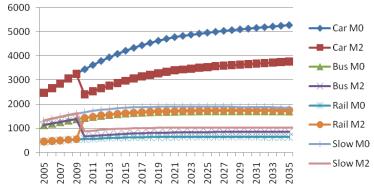
- Research questions:
 - Optimisation of single instruments and policy instrument combinations (PROSPECTS, SPECTRUM, FUNDING)
 - Assessing the effects of
 - metro line extensions (PhD thesis Vieira)
 - high occupancy and bus lanes (PhD thesis Vieira)
 - scarcity of oil supply (STEPS)
 - different scenarios of automated driving (CityMobil)
 - take up of e-mobility (Emob_Wien, EIFER-Perithel)
 - land use policies (EISERN, MARS-Kärnten, EIFER-Perithel)
 - bus rapid transit and informal PT (PhD thesis Top), etc.
 - Identify strategies to reduce GHG-emissions (GHG-Transpord)
 - Estimate direct rebound-effect (URBE), etc.



- Assessing scenarios of automated driving CityMobil
 - Cycbercar PT feeder system in Gateshead Tyne and Wear
 - A system of fully automatic, clean, driverless vehicles




www.citymobil-project.eu



- Assessing scenarios of automated driving (CityMobil
 - Cycbercar PT feeder system in Gateshead Tyne and Wear

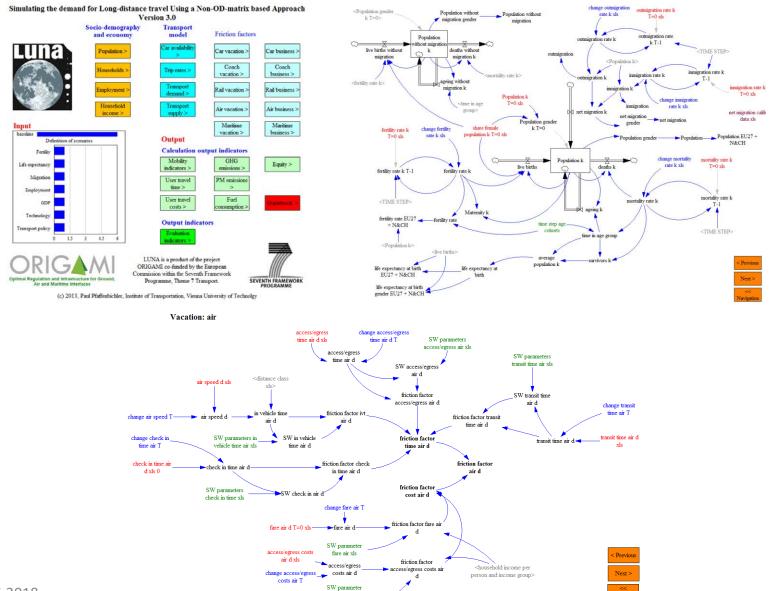
In 2035, introduction of cybercar results in:

- Car: 8% peak decrease, 30% off peak decrease
- Bus: 36% peak decrease, 50% off peak decrease
- Rail: 193% peak increase, 170% off peak increase
- Slow: 29% peak decrease, 45% off peak decrease

LUNA (Simulating the demand for <u>L</u>ong-distance travel <u>U</u>sing a <u>N</u>on-OD-matrix based <u>A</u>pproach)

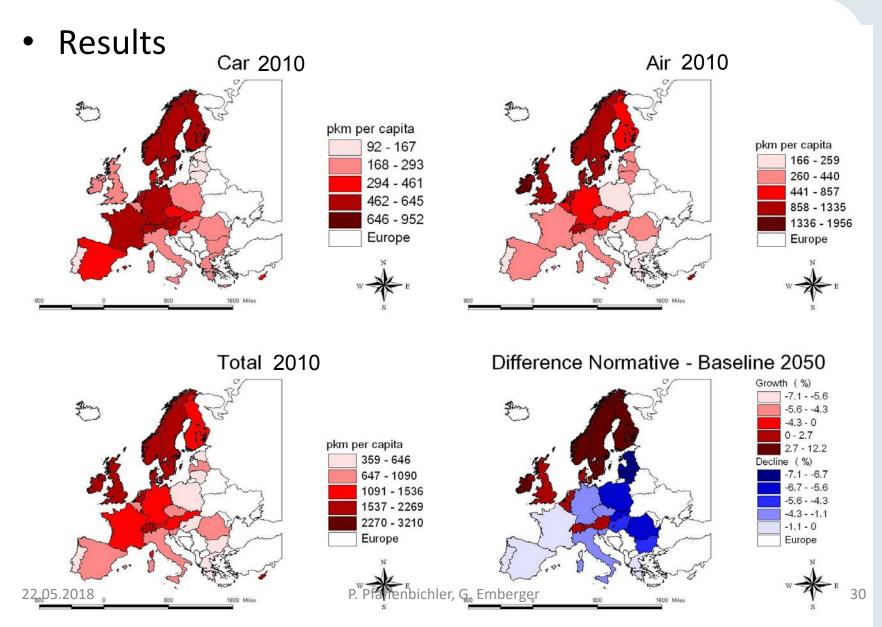
- Start of development: 2011
- **Topic**: Multimodal estimation of long distance travel demand (leisure and business trips)
- Coverage: EU27 plus Norway and Switzerland on a national level
- Background: ORIGAMI
- Link:

www.ivv.tuwien.ac.at/forschung/projekte/international-projects/origami-luna/ & www.transport-research.info/project/optimal-regulation-and-infrastructureground-air-and-maritime-interfaces


LUNA (Simulating the demand for <u>Long</u>-distance travel <u>U</u>sing a <u>N</u>on-OD-matrix based <u>A</u>pproach)

- Modes of transport: Private car, Bus/coach, Railway, Air and Maritime
- Trip purposes: Vacation, Business
- Sub-Models/Modules:
 - a population cohort model,
 - a household formation model,
 - a car ownership model,
 - a non-OD-matrix based transport demand model,
 - an aggregate transport supply model and
 - a module calculating evaluation indicators.
- Time horizon: 2010 to 2050 in time steps of one year

LUNA (Simulating the demand for <u>Long</u>-distance travel <u>U</u>sing a <u>N</u>on-OD-matrix based <u>A</u>pproach)

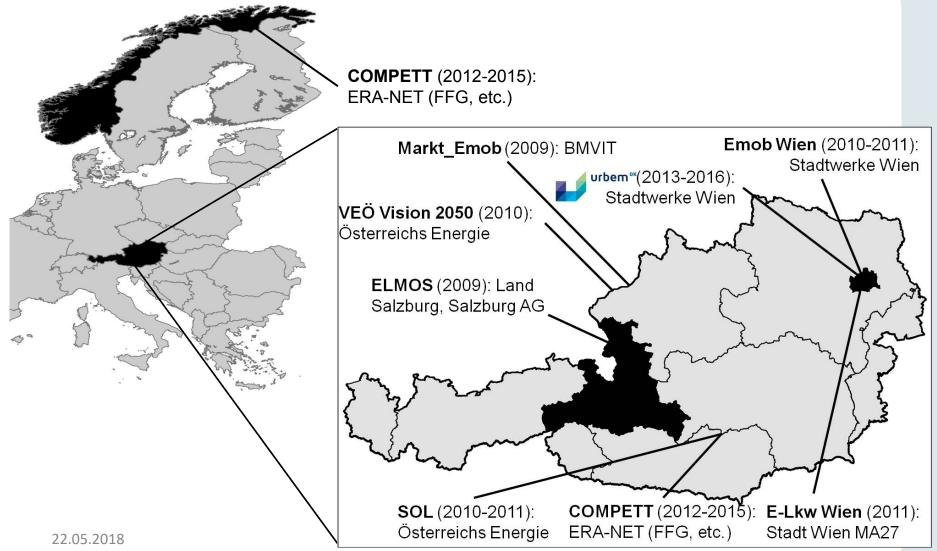


access/egress costs air xls

WIEN

LUNA (Simulating the demand for <u>Long</u>-distance travel <u>U</u>sing a <u>N</u>on-OD-matrix based <u>A</u>pproach)

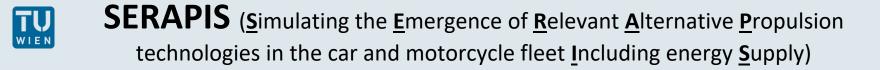
SERAPIS (<u>s</u>imulating the <u>E</u>mergence of <u>R</u>elevant <u>A</u>lternative <u>P</u>ropulsion technologies in the car and motorcycle fleet <u>I</u>ncluding energy <u>S</u>upply)

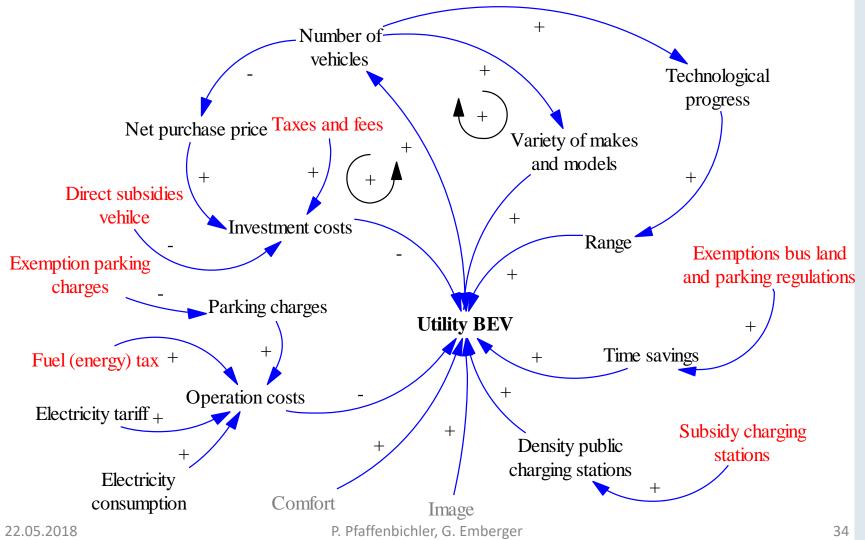

- Start of development: 2009
- **Topic**: Modelling consumer choice of propulsion technology (ICE, PHEV, BEV)
- **Coverage**: Austria (9 counties), Norway (428 districts)
- **Background**: Pre-feasibility study e-mobility on behalf of the Austrian Ministry for Transport, Innovation and Technology
- Link:

e.g. http://compett.org

SERAPIS (<u>Simulating the Emergence of Relevant Alternative Propulsion</u> technologies in the car and motorcycle fleet <u>Including energy Supply</u>)

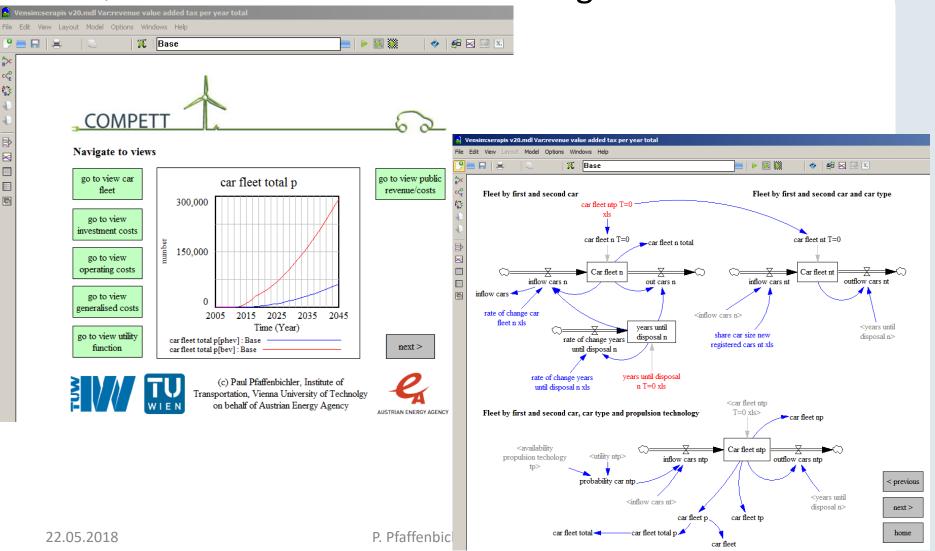
• Overview case studies



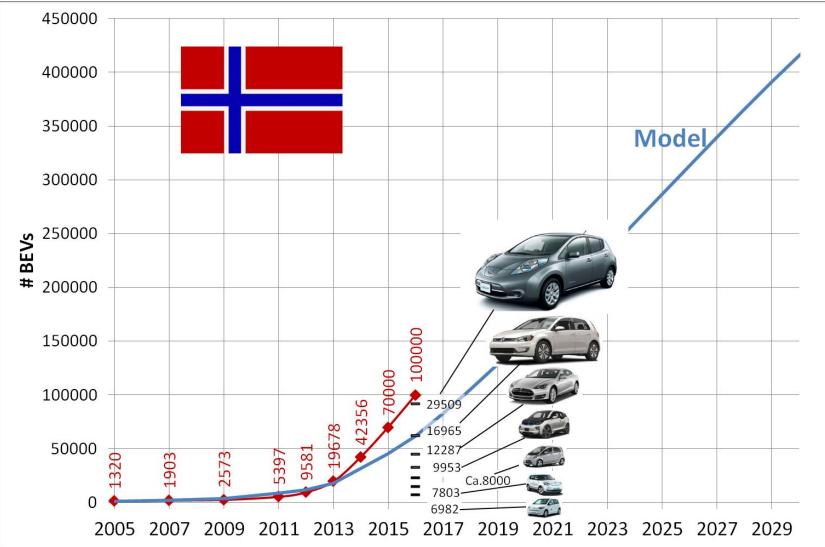

SERAPIS (<u>s</u>imulating the <u>E</u>mergence of <u>R</u>elevant <u>A</u>lternative <u>P</u>ropulsion technologies in the car and motorcycle fleet <u>I</u>ncluding energy <u>S</u>upply)

• Vehicle characteristics:

- Propulsion technology:
 - ICE: internal combustion engine incl. non-plug in hybrids (e.g. Prius)
 - PHEV: plug in hybrid & range extender veh. (e.g. Prius Plug In, Volt)
 - BEV: battery electric vehicles
- Utilisation:
 - 1st (or only) car
 - 2nd+ car
- Size:
 - Compact (from micro-cars up to cars like Renault Clio, Volkswagen Polo etc.)
 - Family (from Volkswagen Golf, Ford Focus, etc. up to BMW 3, Mercedes C, etc.)
 - Luxury (BMW 5 and 7, Audi A6, A7 and A8, Mercedes E and S, Ferrari, Lamborghini, BMW-Xfseries, Jeep-Wrangler, etc.)



• Causal loop diagram utility BEV


SERAPIS (<u>s</u>imulating the <u>E</u>mergence of <u>R</u>elevant <u>A</u>lternative <u>P</u>ropulsion technologies in the car and motorcycle fleet <u>I</u>ncluding energy <u>S</u>upply)

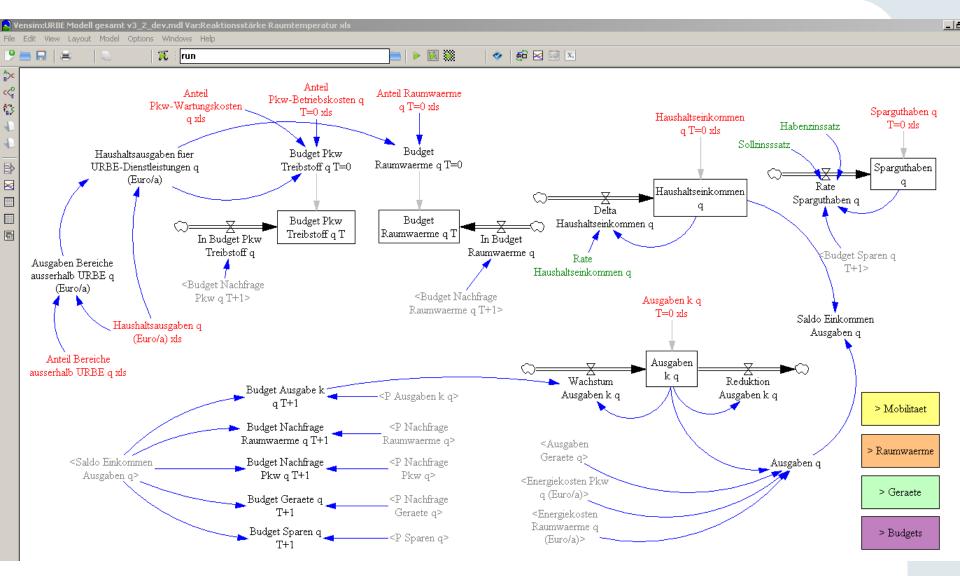
Quantitative stock flow modelling

SERAPIS (<u>s</u>imulating the <u>E</u>mergence of <u>R</u>elevant <u>A</u>lternative <u>P</u>ropulsion technologies in the car and motorcycle fleet <u>I</u>ncluding energy <u>S</u>upply)

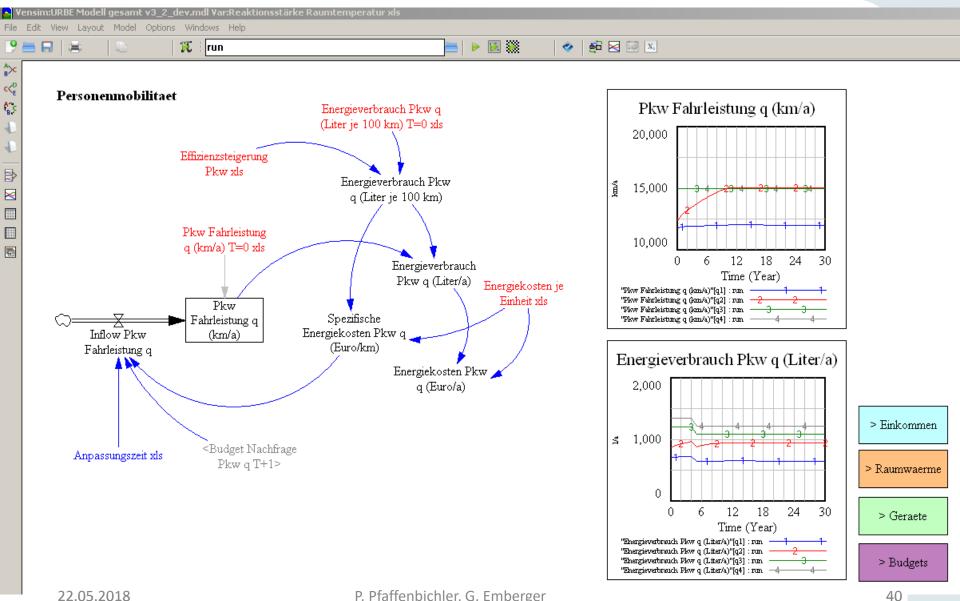
• Comparison Modelling Results - Statistics

- Start of development: 2009
- **Topic**: Modelling the indirect rebound-effect of efficiency gains in the sectors personal mobility, appliances and heating
- **Coverage**: Austria
- Background: project URBE (Urban Rebound-Effects²)

• Link:


www.ivv.tuwien.ac.at/forschung/projekte/nationale-projekte/urbe/

 Akronym in German: <u>U</u>rsachen indirekter <u>R</u>ebound-Effekte – <u>A</u>nalyse effizienzbedingter <u>N</u>achfrageänderungen in den Bereichen Mobilität, <u>U</u>nterhaltungselektronik und thermische <u>S</u>anierung
 Original in German: Urbane Rebound-Effekte



- Sectors: personal mobility (private car), appliances, heating
- Sub-Models/Modules:
 - module balance income spending saving,
 - demand model personal mobility (private car),
 - demand model appliances,
 - demand model heating and
 - model of allocation of monetary resources.
- Time horizon: 30 years

- The rebound effects are higher than estimated in the literature
- The technical improvements are compensated by the rebound effects
- People spent the saved money to buy more things/activities which consume more energy as in the status quo
- Only through implementation of policy packages also in other sectors can minimize the occurrence of rebound effects

- long experience at TU Vienna FVV
- very difficult to teach system thinking in tradional structured curricula of civil engineering
- 1 single lecture is not enough to spread the knowledge to students
- System thinking and SD modelling is maybe to complex for master theses (had only one in my whole career – I was not satisfied with outcome)
- at present most of PhD theses are applications and not developments of new SD models (again very hard for students)
- need for an international network using SD as methodology in transport planning/civil engineering

Extending our knowledge through further

- **1. Research activities** (application/development of SD concept on further research questions
- **2. Teaching and education** programs for students national and if possible also international
- 3. Publications

SD is be a very important tool to gain more insight into complex, dynamic, non-linear systems with feedbacks

Would like to hear your opinion how we should proceed?

Cooperation & Competence

Further information http://www.ivv.tuwien.ac.at/

Contact

Guenter.Emberger@tuwien.ac.at

Paul.Pfaffenbichler@tuwien.ac.at

Thank you very much for your attention and good cooperation in the future!

