Informing Transition Strategies to Alternative Fuel Vehicles Technologies in Developing Countries

Marc HADDAD Center for Mobility Systems Lebanese American University

SDS-SIG Workshop, Vienna, Austria March 23, 2018

Outline

Part IOverview of sustainability challenges in developing countries:The case of Lebanon's Greater Beirut Area (GBA)

Part IIAssessment of mitigation strategies:What can be done with what's readily available

Part III. aPrioritization of alternative fuel and vehicle technologies:What can be done with what's not readily available yet

Part III. bVehicle mix model:
How to arrive at the most beneficial vehicle mix for the lowest costs

Part IVFleet management modeling:
How to maximize fleet energy efficiency by managing on-board energy use

Road transport in the Middle East region

existing conditions

- Region's annual population and economic growth (1.5% and 3.9%) higher than global averages (0.9% and 3.2%)
- Consumption of oil in transport almost doubling in two decades (67.1M tons in 2000, 124.6M tons in 2014)
- Forecast of 1.9% annual increase in transport energy consumption until 2040, almost double the rate for Europe
- Significant challenges in readiness of infrastructure, age of vehicle fleet, modal share of public transport, awareness of sustainability, and GDP per capita

source: "Global Transport Scenarios 2050", World Energy Council, 2011

Road passenger car transport in Lebanon:

existing conditions in Greater Beirut Area (GBA)

Off-Peak Traffic in 2000

Off-Peak Traffic in 2015

- > 40% of Lebanese population (~ 2M people)
- > 5M daily passenger trips in 2015
- > 1.75 million passenger cars registered in 2017
- Occupancy rate of 1.2 pass/veh. (25% < world average)
- Old vehicle fleet (71% older than 10 years, 63% older than 20 years)
- Oil-based fleet (99.2% on gasoline, 62% of total oil consumption)

GHG

 CO_2

CO

NOx

NMVOC

• 2nd biggest emitter of GHG (1.4 times world average)

25% of all GHG Emissions

(% of all sectors)

+114% in 2011

94%

59%

66%

Engine displacement distribution (2007)

D occoncor				. /	1	1
Passenger	transport	l energy	muensity	y (IVIJ	/pass	.KIII

no displac	omont d	ictributi	on (2007)	۱

Public transport in Lebanon:

existing conditions in GBA

Modal share of passenger cars (%) vs. GDP/capita (USD)

Modal share of motorised private mode (%) 100 Houston • Atlanta Riyadh Phoenix(**BAU projection**. •San Dieg Galgary Los Angele Do n ancisoz 80 Vancouve North American pattern Sydney New York . Ñelboume Beiı ●Ath Hambura 60 Manchester •Taipei •Glasgow Bologna Oslo Stockholm Lyon Geneta Copenhage Marseille Milan Singapore European pattern •Newcastle • Barcelona • London Secu Curitibe Greaz Zurich Dusseldc • Paris Vienna. • Salve • Frankfurt •Berne 40 Osaka Munich Gairo Johannesburg Sao Paulo Moscow Rio de Janeiro °∙₿uenos Aires •Tokyo • Amsterdam blanca Bogota Budapest Jakarta Madrid Most efficient pattern • Harare • Beijing • Warsay 20 Hong Kong Chenna Mumbai Shanghai Û 10 000 20 000 30 000 40 000 50 000 60 000 GDP per capita (USD)

Overdependence on passenger cars similar to North American cities, but:

< 30% market share in GBA

Low vehicle occupancy

- without the equivalent
 GDP/capita
- without any strategy towards
 sustainability in the horizon

INDC Commitments and Discovery of Natural Gas

Towards sustainability

• Lebanon signed the Paris Agreement of the UNFCCC for mitigation of transport GHG

- Agreement's INDC targets by 2030
 - Revive the role of public transport
 - Achieve a share of 20% fuel-efficient vehicles by 2030
- Discovery of large reserves of natural gas:
 - How to use feasible alternative fuels in transport?

Part IOverview of sustainability challenges in developing countries:The case of Lebanon's Greater Beirut Area (GBA)

Part IIAssessment of mitigation strategies:What can be done with what's readily available

Part III. aPrioritization of alternative fuel and vehicle technologies:What can be done what's not readily available yet

Part III. bVehicle mix model:How to arrive at the most beneficial vehicle mix for the lowest costs

Part IVFleet management modeling:How to maximize fleet energy efficiency by managing cabin

Mitigation scenarios

Input Data and Assumptions

	Socio-economic assumptions	Passenger transport		oowertrain shares – 2040)
	(2010 – 2040)	system index	Conventional	Hybrid
Baseline scenario: Business As Usual scenario	- Fuel prices up by 50% - Population up by 22% - GDP up by 4 times	36% of pkm on public transport	11.8% small, 54.9% midsize, 33.3% large vehicles	0%
Mitigation option 1: Increase share of Fuel Efficient Vehicles (FEV)	constant	constant	35% small, 55% midsize, 10% large vehicles	constant
Mitigation option 2: Increase share of FEV and Hybrid vehicles	constant	constant	35% small, 55% midsize, 10% large vehicles	10% of new registered vehicles by 2040
Mitigation option 3: Increase share of mass transport	constant	53% (emulating European cities)	constant	constant

Dynamic Assessment of INDC Mitigation Strategies

UNECE's "For Future Inland Transport Systems" (ForFITS) Model

- Determine impact of INDC mitigations strategies on:
 - vehicle stock, transport activity, energy use, CO₂ emissions
 - by 2020 and 2040
- **ForFITS** uses demographic and socio-economic data and assumptions, with limited policy inputs, to model transport activity and estimate fuel consumption and CO2 emissions

ForFITS (2012) Calculation Methodology

Baseline BAU projection

significant growth

Mitigation results

The whole is greater than the sum of the parts

- Increasing FEVs to 35% in 2040 stabilizes energy use and emissions
- Adding 10% HEVs to the mix by 2040 gives 11% additional savings
- Increasing bus pkm to 45% in 2040 reverses growth trends
- Combining all three strategies leads to 63% reductions in 2040 compared to 2010, more than their cumulative savings

Policy Incentives

Increase the market share of alternative fuel vehicles

Туре	Priority sequence	Measures			
Economic and financial	1 Create market Give incentives	Exemption from custom and excise fees, registration fees, and road usage fees at registration.	ise fees, registration fees, (2500 USD) as down payment for imported pre-owned vehicles t and road usage fees at car loan> Extension of loan period years with mileage lower that		Reduce gradually max age of imported pre-owned vehicles to 3- years with mileage lower than 100,000 km.
measures	2 Stop the bleed	annual road-usage fees, and where taxes like the road on swappin			car scrappage program based ng current passenger cars with id and fuel efficient cars
Market development	3 Remove old cars	Create a car termination plant that deals with the car termination process after the swap in the scrappage program			
Policy, legal and regulatory	4 Regulate car imports	Update decree 6603/1995 relating to standards on permissible levels of exhaust fumes and exhaust quality to cover all types of vehicles		into consideration inspection, in add	spection program requirements taking special requirements for hybrid cars' dition to mandating the presence of rs on conventional gasoline vehicles
Institutional/ organizational capacity	5 Close the tap	Set up a mechanical inspection unit at the port of Beirut in charge of checking up the emissions and safety standards of imported pre-owned cars before entering the country			
Social awareness	6 Reform wrong perception	Establish awareness campaign			
Project monitoring and validation	7 Monitor the progress	Create Mobility Monitoring Indicators (MMI) framework			

Part I	Overview of sustainability challenges in developing countries:
	The case of Lebanon's Greater Beirut Area (GBA)

Part IIAssessment of mitigation strategies:What can be done with what's readily available

Part III. aPrioritization of alternative fuel and vehicle technologies:
What can be done what's not readily available yet

Part III. bVehicle mix model:How to arrive at the most beneficial vehicle mix for the lowest costs

Part IVFleet management modeling:How to maximize fleet energy efficiency by managing cabin

Exploring alternative fuels and vehicle technologies

Minimize energy use and GHG emissions for lowest costs

Well-to-wheel assessment

fuel use, emissions and costs of vehicle technologies in Lebanon

Assessment framework

Argonne's GREET

Tank-to-wheel assessment

fuel use, emissions and costs of vehicle technologies in Lebanon

On-board measurements to develop GBA driving cycles

Autonomie simulation results by vehicle type on 20 representative driving cycles for the GBA

Benefits of assessed fuel-vehicle technologies

EV's and PHEV's best if electricity mix is clean, NG clean but energy consuming

Cost methodology

User, government and private sector costs over near, medium and long terms

Technology attractiveness from users' perspective

Environmental-to-cost performance for yearly mileage of 12,000 km

Cost savings compared to gasoline ICEV

Infrastructure investment costs by market penetration rate

per saved WTW GHG emissions

Transition strategy to alternative fuel vehicles

Roadmap

Medium Term Actions

- Convert power plants to NG for clean charging of EVs
- Build small-scale CNG infrastructure for mass transit
 - $_{\circ}$ New investment costs
 - Additional energy and emissions savings

2030 - 2040

- Expand electricity charging infrastructure
 - Additional investment costs
 - High energy and emissions savings

Near Term Actions:

- Remove import taxes on hybrids
 - No investment costs
 - Immediate, but moderate levels, of
 - energy and emissions savings

Part I	Overview of sustainability challenges in developing countries: The case of Lebanon's Greater Beirut Area (GBA)
Part II	Assessment of mitigation strategies: What can be done with what's readily available
Part III. a	Prioritization of alternative fuel and vehicle technologies: What can be done what's not readily available yet
Part III. b	Vehicle mix model: How to arrive at the most beneficial vehicle mix for the lowest costs
Part IV	Fleet management modeling: How to maximize fleet energy efficiency by managing cabin

Towards a beneficial mix of alternative fuel vehicles for lowest infrastructure cost

SD model outline

Model Inputs Model Calculations • User groups • Costs: vehicle, fuel, Adoption = infrastructure Attractiveness of vehicle tech **Model Outputs** (relative utility {emissions, costs, • Vehicle: driving range, range, infra availability}) • % vehicle sales for tech exposure, WTW each vehicle tech emissions User willingness to switch to vehicle tech (tech exposure) Infrastructure Infrastructure construction time construction where: Government policies Infra availability (profitability, Constraints: INDC utilization) targets, tax revenues, personal income

Causal Loop Diagram

SD Model in-progress

SD Model in-progress

Part I	Overview of sustainability challenges in developing countries: The case of Lebanon's Greater Beirut Area (GBA)
Part II	Assessment of mitigation strategies: What can be done with what's readily available
Part III. a	Prioritization of alternative fuel and vehicle technologies: What can be done what's not readily available yet
Part III. b	Vehicle mix model: <i>How to arrive at the most beneficial vehicle mix for the lowest costs</i>
Part IV	Fleet management modeling: How to maximize fleet energy efficiency by managing on-board energy use

Fleet management modeling

Future work

- World Bank funding for BRT system approved
- Repeating previous exercise for bus-fuel technology
 - Assessment of bus fuel-technology needs
 - Assessment of the impact of electrified buses on electricity demand, and definition of optimal location of charging strategies and charging stations

Preliminary results

Backup Slides

mhaddad@lau.edu.lb