Individuals' Social Preferences in JointActivity Choice: The Role of Fairness and Asymmetric Evaluation of Costs and Rewards

Theo Arentze

Urban Planning Group
Eindhoven University of Technology, The Netherlands

Uechnische Universiteit

Group decision making - literature

- Numerous studies on joint activity choice
- within household
- group utility function
- Stated choice experiments
- negotiation - dominance relationships between parties (Hensher et al. 2007)
- preferences conditional on preferences of others (Delleart et al. 1998, Molin et al. 1999)
- Negotiation protocols
- concepts and formal models - no empirical studies (Ma et al. 2011, 2012)

Social psyhological studies on bargaining and negotation

Two-players ultimatum game

One player proposes a distribution of a fixed amount of money

The other player has the option to either accept or reject the offer

If the person accepts he receives the amount offered; if he rejects the persons receive nothing

What would be the outcome under the assumption of rationality?

What do people do in these games?

Findings

- human bias - fairness plays an important role
- Loewenstein et al. (1989) found asymmetry in social utility function
- fairness more important when costs a.o.t rewards are distributed
- What about human bias in joint activity choice?

Assumptions and hypotheses

- Assumptions joint decision making process
- no group utility function
- no central controller
- personal preferences are shared among the group
- persons do proposals and respond to proposals of others
- Hypotheses
- fairness plays a significant role
- heterogeneity in social styles - way of trading-off preference differences
- asymmetry between costs (travel time) and rewards (positive preferences)

Experiment - joint activity choice (1)

Assume you are planning a joint activity with two friends
The preferences in the group are as follows

	Activity A	Activity B	Activity C
Yourself	9	5	7
Friend 1	5	9	7
Friend 2	5	7	9

Which proposal would you do?

- Activity A
- Activity B
- Activity C

Maximizes own outcome
Maximizes group outcome

Experiment - joint activity choice (2)

Another example

The preferences in the group are as follows

	Activity A	Activity B	Activity C
Yourself	5	9	7
Friend 1	9	5	7
Friend 2	5	9	7

Which proposal would you do?

- Activity A
- Activity B

Maximizes group and own outcome

- Activity C

Experiment - joint activity choice - variant (1)

This time the travel times differ

The travel times in the group are as follows (minutes)

	Location A	Location B	Location C
Yourself	5	15	25
Friend 1	5	25	15
Friend 2	25	15	5

Which proposal would you do?

- Location A
- Location B
- Location C

Experiment - joint activity choice - variant (2)

This time one of the friends does a proposal

The preferences in the group are as follows

	Activity A	Activity B	Activity C
Yourself	9	5	7
Friend 1	5	9	7
Friend 2	5	7	9

Friend 1 proposes to do: Activity B
What would you do?

- Accept the proposal

Do another proposal, namely

- Activity A
- Activity C Does this condition make a difference?

Choice tasks overview

Social utility function

$$
U_{i k}=\begin{gathered}
\text { proposed } \\
\boldsymbol{\beta}_{0 k} \cdot I_{i}+ \\
\hline \beta_{1 k} \cdot Z_{i k}+ \\
\beta_{2 k} \cdot \Sigma_{m \neq} Z_{i m}+\beta_{3 k} \cdot D\left(Z_{i \bullet}\right)
\end{gathered}
$$

$U_{i k}$ is the social utility person k assigns to option i
$Z_{i k}$ is the preference value person k assigns to option i
m is an index for the others in the group
Z_{i}. is a person-vector of preference values for option i
D is some measure of dispersion (inequality)
I_{i} is a binary variable indicating whether option i is proposed by a friend
$\beta_{0 k}$ is relative weight person k assigns to proposal status
$\beta_{1 k}-\beta_{3 k}$ are relative weights person k assigns to particular outcomes

Theory

- Under rationality assumption
- persons either maximize an own (selfishness), others' (altruism) or group (neutral) outcome
- equality in outcomes (fairness) does not play a role
- proposal status does not play a role
- costs / rewards difference does not play a role
- Hypotheses
- fairness plays a significant role
- proposal status plays a role (people are cooperative)
- there is an asymmetry between costs and rewards

Experiment

- 315 persons participated
- Representative sample
- Each person received
- 8 tasks -4 x initiating and 4 x responding
- Scenarios
- Activity versus travel time
- High versus low consequences
- Outcome tables were varied by an efficient design

Results - basic MNL model

Activity

Parameter	Value (β)	t -value (β)
Self-interest $\left(\beta_{1}\right)$	0.532	14.0
Other ones interest $\left(\beta_{2}\right)$	0.319	11.1
Inequity $\left(\beta_{3}\right)$	-1.16	-11.9
Proposal status $\left(\beta_{0}\right)$	0.928	9.21
Scale - small consequences	1.33	2.15
Scale - large consequences	1	

Travel time

Parameter	Value (β)	t -value (β)
Self-interest $\left(\beta_{1}\right)$	-0.063	-9.55
Other ones interest $\left(\beta_{2}\right)$	-0.027	-7.01
Inequity $\left(\beta_{3}\right)$	-0.215	-10.5
Proposal status $\left(\beta_{0}\right)$	1.58	13.0
Scale - small consequences	1	
Scale - large consequences	0.608	-4.72

inequity $/$ self $=2.18$
Fairness plays a significant role

Proposal status plays a significant role
inequity $/$ self $=3.40$
Fairness has a bigger influence

Proposal status has a bigger influence

Results - discrete mixture model

Activity

Parameter	Mass point	Value (β)	t -value (β)	Probability (π)	t -value (π)
Self-interest $\left(\beta_{1}\right)$	1	1.10	11.3	0.687	10.8
	2	0.062	0.74	0.313	4.94
Other ones interest $\left(\beta_{2}\right)$	1	0.718	8.74	0.777	13.8
	2	-0.085	-1.27	0.223	3.95
Inequity $\left(\beta_{3}\right)$	1	0.250	0.85	0.288	4.62
		2	-2.50	-9.03	0.712
Proposal status $\left(\beta_{0}\right)$	1	1.17	7.92	0.930	11.4
	2	5.80	3.73	0.070	25.7

Travel time

Parameter	Mass point	Value (β)	t -value (β)	Probability (π)	t -value (π)	
Self-interest $\left(\beta_{1}\right)$	1	-0.020	-1.64	0.525	7.11	
	2	-0.190	-8.39	0.475	6.43	48%
Other ones interest $\left(\beta_{2}\right)$	1	-0.121	-5.26	0.364	3.46	
	2	-0.019	-2.11	0.636	6.04	36%
Inequity $\left(\beta_{3}\right)$	1	-0.601	-9.02	0.550	6.74	55%
	2	-0.079	-1.80	0.450	5.51	
Proposal status $\left(\beta_{0}\right)$	1	8.19	5.95	0.261	5.08	26%
	2	1.39	6.98	0.739	14.42	

There is considerable heterogeneity

Styles

- Balanced style: self \& others \& equity
- Rational style: self \& others
- Selfish style: self
- Social style: equity, equity \& self / others
- Else:
others; none

Strong asymmetry

Activity

Balanced style dominates
Travel time
Social style dominates

Style memberships: estimation results MNL model

Style	Parameter	Activity		Travel time	
		Value	t-value	Value	t-value
Balanced	Constant	1.67	5.95	-0.762	-2.35
Rational	Constant	0.074	0.19	-0.819	-1.99
	age <35 years	0.230		-1.37	
	age $35-<55$ years	-1.28	-2.49	0.309	0.69
	age 55+ years	1.05	2.94	1.06	2.49
Selfish	Constant	-1.10	-2.13	-0.693	-2.19
Social	Constant	0.847	2.75	1.02	4.69
	Male			-0.541	
	Female			0.541	3.29
Else	Constant	0		0	
Adjusted rho-square		0.207		0.169	

Older age group more often rational style

Females more often social style in case of travel times

Conclusions

- Considerable heterogeneity in styles
- Bounded rationality
- Fairness is important
- Process is important (proposal status)
- Asymmetry costs and rewards
- Implications
- People favor compromise solutions for joint activities I travel
- E.g., they are willing to travel further when this leads to more equal distribution of travel times
- The new model of joint activity choice takes process and human bias into account

Thank you for your attention

Questions

