First Results of a Household Joint Activity-Travel Multi-agent Simulation Tool

Thibaut Dubernet, Kay W. Axhausen

Institute for Transport Planning and Systems (IVT) ETH Zurich

Frontiers in Transportation — Social Interactions Workshop 2013

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction

Agent's Coordination in MATSim

Results

Conclusions

Introduction

- most travel simulation tools simulate behavior of *isolated* individuals
 - individuals make decisions independently, given traffic conditions influenced by others
- in reality, individuals coordinate their travel behavior with social contacts
 - household: joint activities, limited number of cars, altruism
 - social contacts: joint activities
 - car-pools: pick-up and drop-off times and locations
- such coordinated behavior has a quite important empirical influence
 - joint trips
 - MZ2010: 18% daily traveled distance as "car passenger"
 - ▶ MZ2010: 32.5% all car stages done with 2+ persons in the car
 - leisure location choice

Aim of this presentation

- present an approach to integrate coordination mechanisms in the MATSim framework
- ► analyze the results of runs on scenarios for the Zurich area
- identify directions of future work

Introduction

Agent's Coordination in MATSim

Results

Conclusions

The MATSim View of (Individual) Decision Making

- agents try to optimize their daily plan given their knowledge of the state of transport system
- this state depends on other agent's behavior
 - random from the agent's perspective
- search for a good daily plan by a co-evolutionary algorithm: all agents perform an EA simultaneously
 - start with an initial plan
 - iteratively:
 - execute plan, score it
 - delete worst plan if more plans than allowed
 - select a past plan randomly based on score
 - (optional) copy it and modify it

Introduction of Coordination

- need to link plan choice for certain plans of certain agents
- no need to link plan choice for unrelated plans: risks on convergence (slow / toward a wrong state)
- ➤ ⇒ individual plans needing coordination are grouped in "joint plans": sets of individual plans to be selected together.
- \blacktriangleright \Rightarrow "incompatibility" between (joint) plans
- redefine replanning:
 - 1. identify groups of agents to replan together
 - 2. remove plans part of the worst "non-blocking" plan combination if needed
 - 3. select feasible combination of individual plans based on scores
 - 4. (optional) copy and modify those plans

Group Identification

some agents have joint plans

- some agents have joint plans
- or use common resources

- some agents have joint plans
- or use common resources
- "social ties" along which coordination behavior can be created

- some agents have joint plans
- or use common resources
- "social ties" along which coordination behavior can be created
- agents with coordination must be in the same group

- some agents have joint plans
- or use common resources
- "social ties" along which coordination behavior can be created
- agents with coordination must be in the same group

- some agents have joint plans
- or use common resources
- "social ties" along which coordination behavior can be created
- agents with coordination must be in the same group

(1) (2) (3) (4) (5)

Plan Selection

agents have plans

- agents have plans
- joint plans constraints

- agents have plans
- joint plans constraints
- incompatibility constraints

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints

- agents have plans
- joint plans constraints
- incompatibility constraints
- aim: model the choice of individual plans, given the constraints

- weighted selection: select the feasible combination which maximizes the sum of weights of individual plans
 - scores
 - Gumbel distributed (Logit-like)
 - random
- "utility transfers" in joint plans
- without contraints, same as selecting the plan of highest weight for each agent
- can be done efficiently (branch-and-bound)

- copy
- ► modify:

- copy
- modify:
 - agents interations

- copy
- ▶ modify:
 - agents interations
 - other dimensions

Introduction

Agent's Coordination in MATSim

Results

Conclusions

Aims

- use the approach for the case of *intra-household ride sharing*, using a pre-existing scenario for the Zurich area
- see how the approach performs when "plugging" it in a pre-existing scenario, with a minimal amount of adaptation
 - Hope: structural constraints can explain important aspects of joint travel patterns
- identify limitations of scenario/approach

Scenario

- Zurich scenario:
 - planning network
 - schedule-based public transport
 - individuals grouped in households (Census 2000)
 - working day activity chains from National Travel Survey 2005
 - only households for which at least one member passes at least once closer than 30km to *Bellevue* Place are retained
 - 10% sample
- validation data:
 - National Travel Survey 2005
 - consider only trips with origin and destination closer than 20km to *Bellevue*

Network

Utility Function

Utility Function Parameters

- re-calibrated from existing scenario
- no explicit marginal disutility of traveling by car (*opportunity* cost only)
- "desired durations" differ from agent to agent
- opening times defined at the *facility* level

Replanning Modules

Module	Weight	Deactivated in Scenarios
Logit-like Selection	0.5	
Time Allocation Mutation	0.1	
Subtour Mode Mutation	0.1	
Re-routing	0.1	
Joint Trip Mutation	0.1	base
Joint Leisure Location Choice	0.1	base, jt

- full household always replanned together
- Joint Trip Mutation: joins a car and a public transport trip
- Joint Leisure Location Choice: allocates randomly a leisure location from the set of leisure locations of the household
- "innovations" deactivated after 900 iterations

Variants of the Scenario

- 1. *base*: no joint travel
- 2. *jt*: joint trips are randomly included
- 3. jt.l: joint trips are randomly included, leisure location choice
- 4. *jt.l.s*: joint trips are randomly included, leisure location choice, score linearly time passed with household members
- 5. *jt.l.sl*: joint trips are randomly included, leisure location choice, score linearly time passed with household members *in leisure activities*
- 6. *jt.l.sll*: joint trips are randomly included, leisure location choice, score logarithmically time passed with household members *in leisure activities*, with the same parameters as for leisure

Score Evolution (Base Scenario)

Mode Evolution (Base Scenario)

Mode Share Comparison

Distance Distribution per Mode

Mode

Passenger Share per Purpose: NTS vs jt

Passenger Share per Purpose: NTS vs jt.l

Passenger Share per Purpose: NTS vs jt.l.s

Passenger Share per Purpose: NTS vs jt.l.sl

Passenger Share per Purpose: NTS vs jt.l.sll

Summary

- though "utility transfers" seems a strong hypothesis, joint travel share underestimated
 - no explicit cost of travel
 - no limited vehicle resources (no data)
- "drive to work/school" trips quite well predicted, the rest underestimated
- driver detours are overestimated, probably due to the absence of explicit disutility of travel
- associating a positive utility to joint presence at leisure activity did not improve the share of joint modes to leisure activities
 - no joint generation of schedules
 - no generation of pure serve passenger tours
 - only intra-household ride-sharing

Introduction

Agent's Coordination in MATSim

Results

Conclusions

Conclusion

- most travel simulation tools do not include joint travel
- an approach applicable with general social network topologies was implemented in MATSim
- comparison of the results with travel diary data allows to identify limitations of the approach and plan the next steps

Next Steps

- improve accuracy of driver detours
 - re-calibrate a scenario with cost of travel
 - joint activities w/ location choice?
 - not a significant impact for the approach used here
- improve overall passenger share
 - household-level correlation of plan construction / co-adaptation of plan structures
 - consider limited vehicle resources
 - generate pure serve-passenger tours?
 - purpose "service" represents only 10% of the driver trips in the National Travel Survey
 - include friendship relationships?
- improve specificity of leisure purpose
 - consider friendship relationships?
 - co-adaptation of plan structure