Viewing Forest in Pol-InSAR

Tobias Mette (tobias.mette@dlr.de), Florian Kugler, Kostas Papathanassiou, Irena Hajnsek

> DLR - German Aerospace Center Microwaves and Radar Institute, Pol-InSAR Research Group

Content & Background

PollnSAR = polarimetric SAR interferometry

Sensitive to height distribution of scattering processes in forest

- Test site Traunstein
- Radar parameters and characteristics
- Coherence volume decorrelation – forest height
- Allometry height to biomass
- Summary and Outlook

Test site Traunstein

Test site Traunstein

Ground data & radar data

Ground data (Forest inventory)

- mainly spruce
- up to 40m height, 450t/ha biomass
- 21 stands (~ 6 plots/ stands)

Polarimetric interferometric SAR (E-SAR sensor)

- L-band (23cm, 1200MHz)
- Fully polarimetric (HH,VV,HV/VH)
- 5m baseline at 3000m flight height
- Repeat pass (20min)

Radar characteristics and parameters

Radar characteristics & volume scattering

Radar penetrates clouds

all weather capability

object characteristics in microwave spectrum

properties

penetrates canopy, interacts with tree structures and ground

volume scatterer

Single SAR image – backscatter intensity

Object microwave signature

- Wavelength
- Incidence angle
- Polarization

At L-band

Volume scattering over forest stronger than Surface scattering over fields, but little differences within forest (saturation at 40-50 t/ha)

Interferometric SAR images – the 3rd dimension

no extinction

Interferometric SAR images:

- ➤ 3rd dimensions (height) in interferometric phase
- ➤ In forests, height of scattering center depends on extinction and ground

extinction

Interferometric phase

Object height measure

Forest at L-band has a *noisy* phase due to different penetration depths into forest (ground, extinction).

Interferometric coherence

Object height statistics

= phase correlation in a certain window

$$\gamma = \frac{\langle i_1 \cdot i_2^* \rangle}{\sqrt{\langle i_1 \cdot i_1^* \rangle \cdot \langle i_2 \cdot i_2^* \rangle}}$$
$$0 \ge \gamma \ge 1$$

Volume scatterers

- higher height = lower coherence
- Volume decorrelation

Interferometric coherence -Volume decorrelation -Forest height

Volume decorrelation - the ideal sinc-function

$$\gamma = \gamma_{vol} \cdot \gamma_{range} \cdot \gamma_{system/proces \sin g} \cdot \gamma_{temporal}$$

Volume decorrelation

function of height

> inversion

Other decorrelations

not related to height

$$\gamma_{vol} = \frac{\sin(\frac{1}{2} \cdot \Delta kz \cdot h)}{\frac{1}{2} \cdot \Delta kz \cdot h} \cdot 0.9$$

Sinc-Inversion results

The Random Volume over Ground model (RVoG)

Model parameters

System observables

Model parameters

System observables

height

Coherence (InSAR)

- height
- extinction
- ground contrib.

Coherence at 3 polarizations (PolInSAR)

RVoG-Inversion results

Height biomass allometry

Allometry: height to biomass

 $Biomass = 1.66 \cdot height^{1.57}$

Variability

- ~15% site conditions
- ~20% between climax species, not poplar/birch
- unlimited reduction due to thinning/ management concept

Allometry: Pol-InSAR to biomass

Performance of heightbiomass allometry from the ground measurements

Biomass estimation from Pol-InSAR heights and an assumed height-biomass allometry

Summary and outlook

Summary

- 1. Radar at long wavelength (L- and P-band) penetrates the canopy and interacts with tree structures and the ground (Forest = Volume scatterer)
- 2. Interferometric coherence is a function of volume height (=> height inversion)
- Polarimetry increases the observation space and allows for more differentiated models (=> RVoG)
- 4. L-band: height inversion performance: r²=0.86 (sinc-inversion), r²=0.92 (RVoG)
- 5. Reference height-biomass allometry for even-aged managed forests
- 6. Height-biomass allometry: $r^2=0.88$ (inventory data), $r^2=0.78$ (PolInSAR)

Future steps:

- Height inversions at other frequencies X-band/ P-band
- Compensation/ modelling of other decorrelations, esp. temporal decorrelation
- Models with higher complexity dual/ multiple baselines or frequencies
- Height definition / height-biomass allometry in heterogeneous forest
- Density dependence of the height inversion

in der Helmholtz-Gemeinschaft

