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Context

Interpret Remote Sensing data from medium 
resolution optical sensors to characterize 
(quantify) 3D heterogeneous vegetation (e.g. 
forests).

MISR (Terra) acquires multi-angular reflectances
since 2000.

4 wavelengths, 9 view angles

LandBRF (Level 2) are available at 1.1km resolution.



Multiangle views for surface structure



Multiangle views for surface structure



Ref: Pinty et al. (2002) IEEE TGRS
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Surface structure from MISR/Terra

Ref: http://www-misr.jpl.nasa.gov/gallery/galhistory/2001_may_30.html
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Inversion problem

3-D radiative
transfer model

Biome parameters
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Modelling Issues

3-D Monte-Carlo models are heavy to run.

Pre-calculate Look Up Tables (LUTs) over many biomes:

Forests: 1) tree density 3) greenness of leaves 

2) LAI in crowns 4) etc

+ background (anisotropic) reflectance

BRF to be simulated in (at least) 2 wavelengths, 

for several Sun angles and several view angles.



Solutions

1) Have a fast(er) 3D MC model;

2) Save as much effort as possible in constituting 
the LUTs: 

a) decoupling background / vegetation;

b) find spectrally invariant terms;

c) simplify least significant contributions.

The Rayspread model



The Rayspread model

Ref: Govaerts et al. (1998), Widlowski et al. (2006)

Rayspread inherits from the Raytran model (3D Monte-Carlo raytracer)

Rayspread implements a variance-
reduction technique: local estimator
(aka photon-spread)

~ 100 times faster.

Rayspread results are non-discernible 
from Raytran (except for the Monte-
Carlo noise). Both models participate 
to RAMI Phase 3.



1) Have a fast(er) 3D MC model;

2) Save as much effort as possible in constituting 
the LUTs: 

a) decoupling background / vegetation;

b) find spectrally invariant terms;

c) simplify least significant contributions.

Solutions

Radiative components



Decompose the complex problem into simpler 
problems  to solve

Black Background 
contribution

1) It regulates the absorption
processes associated to vegetation 
photosynthesis

2) Strongly depending on the density
of green vegetation
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Ref: Pinty et al. (2004) Journal Geophysical Research, doi:10,1029/2004JD005214
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Black Canopy 
contribution

1) No absorption process by vegetation 
associated with this wavelength independent 
contribution

2) Strongly controlled by 3-D distribution
of vegetation extinction coefficient

Ref: Pinty et al. (2004) Journal Geophysical Research, doi:10,1029/2004JD005214

Decompose the complex problem into simpler 
problems  to solve
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Ref: Pinty et al. (2004) Journal Geophysical Research, doi:10,1029/2004JD005214

1) Controlled by multiple scattering events 
between the background and the canopy

2) Mostly negligible in the visible 
domain of the solar spectrum

Decompose the complex problem into simpler 
problems  to solve



Use a 1-D solution for the background-canopy 
multiple scattering contribution
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Ref: Pinty et al. (2004) Journal Geophysical Research, doi:10,1029/2004JD005214

Developed analytical formulation of this intensity.

Assume a homogeneous plane-parallel, turbid 
medium representation (1-D solution).

“Effective” state variable values are required for

the 1-D model: LAI, rl and tl
~ ~ ~

3rd term =



Effective state variable values ensure that 

1-D fluxes are close to 3-D fluxes.

Direct transmission at  30 
degrees Sun zenith angle,
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Direct transmission at  30 
degrees Sun zenith angle,

= 0.312

Ref: Pinty, B. (2006) Journal Geophysical Research

True <LAI> =2.0

3-D heterogeneous system
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3-D heterogeneous system
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True <LAI> =2.0

3-D heterogeneous system

True <LAI> =2.0True <LAI> =2.0

3-D heterogeneous system

True <LAI> =2.0

1-D system representation

True <LAI> =2.0

1-D system representation

LAI  = 0.896
~

Effective state variable values ensure that 

1-D fluxes are close to with 3-D fluxes.
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Estimates of the effective quantities

are retrieved together from inversion of the R and 
Tdiff fluxes associated with the Black Background
contribution from 3-D MC simulations.

and

Reflected flux

Transmitted flux

lr~ lt~



Ratio of effective (1-D)/true (3-D) values

lr~ lt
~

+

~LAI )30( ο

Variable Sparse             Medium           Dense

0.35                  0.45               0.76

lr~ lt
~/

0.82                  0.84               0.88

4.65                  5.76               7.14(NIR)

(NIR)

Use the 1-D model for the estimation of directional intensities: BRFs

Effective variables are retrieved so that the 1-D model 

reproduces (at best) the 3-D MC fluxes.



Performance of the analytical solution
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Final simplified expression for the radiance 
fields from any complex land surface

Black Background

Black Canopy

Multiply scattered 
with background

Monte Carlo 
solutions

Analytical 1-D 
solution

Ref: Pinty et al. (2004) Journal Geophysical Research, doi:10,1029/2004JD005214



Inversion strategy

• Use ecological knowledge, e.g., allometric equations 
to design a large set of canopy scenarios once for 
all (ref. Widlowski et al. (2003))



Examples of geophysical scenarios



Examples of geophysical scenarios



Examples of geophysical scenarios



Examples of geophysical scenarios



Examples of geophysical scenarios



Examples of geophysical scenarios



• Estimate the Black Background and Black Canopy
contributions associated with all scenarios: use 3-D MC 
simulations.

• Estimate the effective state variable values of the 1-D 
problem in order to simulate efficiently the vegetation-
background coupled contribution (1-D model is faster).

• Adopt and inversion scheme minimizing the distance 
between measurements and simulations.

Inversion strategy

• Use ecological knowledge, e.g., allometric equations 
to design a large set of canopy scenarios once for 
all (ref. Widlowski et al. (2003))



What did we gain?

• Inversion scheme based on limited MC simulations:
Black Background and Black Canopy components only 
are requested.

• The background brightness value is solved as a 
continuous variable during the inversion.

• Allows detection of fast changes in the background 
conditions (e.g., snow and snow melting) and slow 
modifications in the canopy (e.g. LAI,…)



Thank you… Questions?
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