

PROCESS ORIENTED OBJECT-BASED ALGORITHMS FOR SINGLE TREE DETECTION USING LASER SCANNING

Dirk Tiede¹, Christian Hoffmann²

¹University of Salzburg, Centre for Geoinformatics (Z_GIS), Salzburg, Austria; dirk.tiede@sbg.ac.at
²Definiens AG, Munich, Germany; choffmann@definiens.com

ZGIS Centre for GeoInformatics, Salzburg University, Austria - 3D Remote Sensing in Forestry, 15/02/2006, Vienna

Outline

Approach

Test site and data

Algorithms for segmentation and classification:

- Pre-segmentation and -classification
- Local maxima algorithm
- Object growing algorithm
- Results
- Discussion and outlook

Approach

- Main goal: tree identification and tree crown delineation using new process oriented object-based algorithms.
- Problems occurred in earlier studies a segmentation algorithm based on homogeneity was not successful for tree crown delineation

 \rightarrow assumption that a centre-weighted segmentation algorithm might be better suited to forest applications.

- The individual algorithms were programmed in Definiens' Cognition Network Language (CNL) available in the most recent version of the eCognition software.
- Single algorithms are combined to form a complete "ruleware" for automated information extraction.

- Bavarian Forest national park which is located in south eastern Germany along the border to the Czech Republic.
- Six plots were chosen from a set of 44 reference sites, established either between 2001 and 2002
- Representing different forest types
- Same datasets as in a previous study to ensure the comparability of the different

approaches (Tiede et al. 2004)

- Size of the six test plots varied (20 x 50 to 20 x 100 meters):
- Field measurements for each plot were available including tree positions at the ground with an accuracy of several centimetres.
- Laser scanning data for each plot were recorded by the airborne LiDAR system "Falcon" from TopoSys GmbH with an average point density of 10pts/m². First and last pulse data were collected during the flights
- The datasets were processed and classified using TopPit (TopoSys Processing and Imaging Tool) software to interpolate a Digital Surface Model (DSM) and a Digital Terrain Model (DTM).
- The work in this study was done using a nDSM derived by a subtraction of DSM and DTM - with a ground resolution of 0.5 m.
- Image data for visual accuracy assessment only

Algorithms for segmentation and classification

- "Ruleware" development
- Combining different algorithms in one process tree

segmentation, objectrelated modelling and classification

Pre-segmentation and -classification

- Coarse pre-classification using a multiresolution segmentation algorithms
- Differentiation of two classes:
 - ground/non-tree and tree area

Pre-segmentation and classification

- New concept of using an image object domain allows focusing on the pre-classified tree crowns
- Leads to a performance gain, more complex algorithms can be limited to sub areas of the dataset
- Possibility of different segmentation algorithms and varying object size in one level

Z<u>G</u>IS

Local maxima algorithm

- Pre-classified tree objects are broken down to pixel-sized objects (chessboard segmentation with a minimal object size)
- Local maxima detection assumed tree tops – only for the tree objects → avoidance of false positives in areas between the tree objects
- Search radius has to be adapted for different forest stand types.

Object growing algorithm (delineating of tree crowns)

- Local maxima are used as "seed" points to build up new meaningful objects
 - Use of a looping process structure to select and merge candidate neighbouring objects
 - Simultaneous object-growing

➔ more accurate separation of the extracted crowns instead of treating the objects sequentially

- Variables are used to implement stopping criteria and to coordinate object growth
- Candidate neighbouring objects are taken into account if:
 - difference in height between the regarded objects does not exceed a certain limit
 - maximal crown width is not reached

Object growing algorithm (delineating of tree crowns)

Pre-classified tree

3D Remote Sensing in Forestry, 15/02/2006, Vienna

objects, but not build up to a tree crown object ZGIS

Object "cleaning"

- Tree crown objects partly contain holes or empty spaces
- Subsequent "cleaning" process was applied to classify / and merging these holes according to the surrounding objects.
- The objects have specific attributes and mutual relations
 Spatial relationships (e.g. "find enclosed by") can be used to find all holes which are surrounded by a tree crown image object.

Results - Tree identification

Sample plot	Field measurements	Local maximum calculation		% of found
-	Dominant trees	Dominant trees	False positives	dominant trees
Plot 22: mature mixed forest	32	24	0	75.0
Plot 50: sub-alpine well spaced mature spruce	43	35	1	81.4
Plot 57: mature spruce	44	31	0	70.5
Plot 59: juvenile spruce	79	72	4	91.1
Plot 60: mature beech	30	20	1	66.7
Plot 64: mature beech	38	33	3	86.8
Sum of all plots	266	215	9	80.8

Plot 64: stage of maturation, denseness: spacious

Plot 60: regeneration stage, denseness: closed

Results - tree crown delineation

- Accuracy assessment for the delineation of tree crowns was carried out only visually so far
- mainly good results for dominant trees and well spaced conditions
- Strongly linked to the local maxima results

Results - tree crown delineation

- Problems in dense deciduous forest stands
- Local maxima method used to find "seed" points partially failed when the shape of the tree crowns tended to be rather flat than conical
 - → representation of the crown in the LiDAR data is not clearly distinct
 - ➔ non-recognised tree crowns or doubles.

Results – tree crown delineation

- delineated objects are sometimes not compact or grow to next located areas
- Use of a growing limit (crown width limit) could solve the problem partly
- Juse of an object shape parameter is considered (e.g. Shape Index)

New possibilities are extending the eCognition software package to a modular, process oriented programming language ➔ different segmentation algorithms, image object domain concept, looping structures

→ new and complex opportunities for single tree detection / delineation

Disadvantages of a segmentation algorithm based on homogeneity concerning the detection of non-homogeneous objects have been overcome

Still: Object-based accuracy assessment is needed

- "Classic" accuracy assessment techniques from pixel-based remote sensing are not fully satisfying for quantifying the accuracy of delineated tree crowns
- "when can we identify an object in one data set as being the same object in another data set?" (geometric overlap, shapearea relations, centroid movements, etc.)
- Currently, additional studies are being conducted to include an object-based accuracy assessment

➔ for example to compare automatically delineated crowns and manually delineated crowns by an interpreter with the help of a new tool called LIST (Lang et al., in press)

Discussion and outlook

Future goals:

- Single tree classification on a species level, using additional information (e.g. image data or raw LiDAR point data)
- Automated system, where in a first step - on a higher level – forest stand types will be delineated and separate modules for each stand type will be implemented
 - ➔ automatically adaptation for different stand types
- Deriving a type of 3D metrics from raw LiDAR point data using the delineated tree crowns to provide a threedimensional forest structure on a single tree level

Announcement

BRIDGING REMOTE SENSING AND GIS 1st Conference on Object-Based Image Analysis July 4-5, Salzburg, Austria mailto: <u>obia@agit.at</u> | web: <u>www.agit.at/obia</u>

Acknowledgements

We would like to thank the administration of the Bavarian Forest national park for the provision of the data used in this study.

References

• Lang, S., Schöpfer, E., Langanke T. (in press). Combined object-based classification and manual interpretation – Synergies for a quantitative assessment of parcels and biotopes. Geocarto International.

Tiede, D., Burnett, C. and Heurich, M. (2004). Objekt-basierte Analyse von Laserscanner- und Multispektraldaten zur Einzelbaumdelinierung im Nationalpark Bayerischer Wald. In: S. Strobl, T. Blaschke, G. Griesebner (Hrsg.), Angewandte Geoinformatik 2004, Wichmann Verlag, Heidelberg, Germany, pp. 690–695.

Z (AIS