#### PROSPECT OF AUTOMATED CLASSIFICATION OF TREE SPECIES COMPOSITION FROM IKONOS SATELLITE IMAGERY





3D Remote Sensing in Forestry International Workshop 14-15 Feb. 2006 Filip Hájek Dpt. of Forest Management, Faculty of Forestry and Environment CUA Prague Kamýcká 1176, 165 21 Praha 6 hajek@fle.czu.cz

### Background:

Manual interpretation of aerial photos never quite operational

- call for development of knowledge-based classification methods
- automated estimation of tree species composition from Ikonos VHR imagery using object-oriented approach

#### thematic input to be integrated into detailed 3D stand modelling

#### Study area



Man-planted lowland forests

Diverse species composition and stand structure

Mature stands:

- Picea
- Pinus
- Quercus
- Acer
- Larix
- Betula

Young plantations of Pinus, Quercus

#### DEM

#### • digital contour maps from ZABAGED<sup>®</sup> GIS database at scale 1: 10 000



#### **Topographic normalisation**



#### Signature space enlargement

- additional channels calculated in ERDAS Imagine 8.7:
  - Low-pass filters
  - Tasseled cap transforms
  - IHS transformation
  - Sobel edge detection
  - Haralick texture measures
- derived band rationing calculated as "Customised features" in eCognition 4.06 (NDVI, NIR/red, green\*NIR....)



#### **Feature selection**

- 1. 30 sample objects manually classified
- 2. contribution of 15 selected features assessed by Disriminant analysis in S-plus

feature distribution of two competing classes visually verified (histogram comparison)

#### **Segmentation parameters**

| Segmentation level | Scale<br>4m/pan | Homogeneity criterion |       |                |            |       |
|--------------------|-----------------|-----------------------|-------|----------------|------------|-------|
|                    |                 | Color                 | Shape | Shape settings | 0          |       |
|                    |                 |                       |       | Compactness    | Smoothness | -     |
| Level I – Landuse  | 25 / 60         | 0.8                   | 0.2   | 0.5            | 0.5        | E 130 |
| Level II – Forest  | 18 / 45         | 0.7                   | 0.3   | 0.5            | 0.5        | R     |
| Level III - Stand  | 5 / 12          | 0.7                   | 0.3   | 0.7            | 0.3        | 100   |



# Class-based segmentation at two lower levels

## **Class definition**

Image object classification at three levels:





#### **Fuzzy classification**

#### classes characterised by a sets of features:



# each feature defined a FUZZY membership function

- Spectral
- Textural
- Geometric
- Contextual



### **Results**

| Cover type / Statistics | shadows     | ground | transition | Acer | Quercus | Picea | Betula | Larix |
|-------------------------|-------------|--------|------------|------|---------|-------|--------|-------|
| KIA per class (4m)      | 0.68        | 0.85   | 0.63       | 0.92 | 0.92    | 0.92  | 0.70   | 0.77  |
| KIA per class (pan)     | 0.94        | 0.78   | 0.58       | 1.00 | 0.77    | 0.94  | 0.82   | 0.61  |
| Overall accur (4m/pan)  | 0.83 / 0.83 |        |            |      |         |       |        |       |
| KIA (4m/pan)            | 0.80 / 0.81 |        |            |      |         |       |        |       |





| Cover type / Statistics   | ground      | plantat | mature | Y conifer | Y broadl | Y other |
|---------------------------|-------------|---------|--------|-----------|----------|---------|
| KIA per class (4m)        | 0.63        | 0.64    | 0.74   | 0.36      | 0.30     | 0.76    |
| KIA per class (pan)       | 0.48        | 0.36    | 0.87   | 0.61      | 0.88     | 0.82    |
| Overall accuracy (4m/pan) | 0.63 / 0.71 |         |        |           |          |         |
| KIA (4m/pan)              | 0.57 / 0.66 |         |        |           |          |         |

## Conclusions

- 1. Estimation of forest species composition can be achieved at sufficient scale by object analysis of 4m and pan-sharpened Ikonos data
  - derived image transforms (ratios of green and NIR bands, Sobel edge and GLCM Variance)
  - spectral signatures normalised with the high resolution DEM
- 2. Delineation of succession stages is dependent on amount of texture information

both 4m / 1m resolution imagery have specific benefits utilization in different forest management tasks