

"FULL-Waveform Analysis of Small Footprint Airborne Laser Scanning Data in the Bavarian Forest National Park for Tree Species Classification "

> Josef Reitberger Peter Krzystek Marco Heurich

Outline

- Motivation
- Bavarian Forest National Park as study area
- Full waveform LIDAR data
- Decomposition of waveform data
 - Waveform model
 - Estimation of the model parameters
 - Extraction of 3D points
- Metrics for tree species classification
- Conclusions and outlook

Motivation

- Automatic tree species classification in forest inventory is desirable because of
 - Cost saving
 - Shorter update cycles
- Use of full-waveform data
 - More information than conventional LIDAR data
 - Data interpretation not sophisticated up to now
- First steps of processing and analyzing waveform data will be shown
 - Decomposition of waveform data
 - Distribution of derived points in trees
 - Metrics for tree species classification

Bavarian Forest National Park

FULL-WAVEFORM ANALYSIS OF SMALL FOOTPRINT AIRBORNE LASER SCANNING DATA IN THE BAVARIAN FOREST NATIONAL PARK FOR TREE SPECIES CLASSIFICATION

Josef Reitberger

February 2006

Test sites

- Test sites cover different forest structures
 - Natural forest / Managed forest
 - High elevation / Valley bottom
 - Mixed mountain forest
 - Spacious / closed

© Bavarian Forest National Park

Test sites

- Test sites cover different forest structures
 - Natural forest / Managed forest
 - High elevation / Valley bottom
 - Mixed mountain forest
 - Spacious / closed

Lidar data

- Flight in September 2004
- TopEye MK II system
- Palmer scanner => scan angle between 14 and 20 degrees
- Wavelength 1550 nm
- Pulse rate 50 kHz
- Pulse length 5 ns
- Flying height 200 m
- 25 points/m²
- Full waveform data
 - 128 samples (fixed length)
 - Sample rate: 15 cm
 - Waveform limited to 19 m

Waveform model

• Waveform as a sum of Gaussian functions plus a bias:

$$w(t) = \varepsilon + \sum_{m=1}^{N_p} A_m \exp\left[-\frac{(t-t_m)^2}{2\sigma_m^2}\right]$$

- \mathcal{E} : Bias (noise level) of the waveform
- N_p: Number of peaks in the waveform
- A_m : Amplitude of the mth peak
- t_m : Time position of the mth peak
- • σ_m : half-width of the mth peak at a height of $\frac{A_m}{\sqrt{\rho}}$ (standard deviation).

Estimation of the model parameters

- Least squares adjustment to estimate the model parameters ($\epsilon,\,A_m,\,t_m,\,\sigma_m)$
- Initial values necessary because of nonlinear adjustment:
 - Median of the waveform => ε
 - Smoothing => local maxima => threshold based on the mean absolut deviation of the waveform (MAD) => A_m, t_m
 - Standard deviation of the transmitting pulse => σ_m
- Levenberg-Marquardt iteration scheme to avoid divergence
 - In cases of inexact initial values
 - In cases of strong overlaying returns
- Estimation of quality measures of the model parameters by error propagation
 - Standard deviation of $t_m \sim 2 \text{ cm} (< 1/7 \text{ sample rate})$

Examples

Up to 4 or 5 additional peaks between first and last reflection

ן ררך ררך

Overlaying return pulses

- Adjustment approach separates overlaying return pulses clearly
- Height discernability superior to conventional lidar systems

Avoidance of pseudo peak detection

- Erroneous peaks right after big ones because of "ringing"
- => rules are established to overcome these errors
- Exclusion of peak if
 - Second peak is closer than 1.5 m to the first peak
 - Amplitude is smaller than 1/5 of the amplitude of the first peak

Distinction between real peaks and noise

- Thresholding of the initial values works well in most cases
- In few cases smaller peaks are not found
- Possible improvement:
 - Stepwise reducing the threshold by considering sigma0 of adjustment

Point distribution

- Up to 100% more points from the waveforms than from the standard first- and last pulse mode of the TopEye system, because
 - Points between first and last echo are ignored by the conventional method
 - Lower sensitivity of the conventional method

Area	Tree specie	Size	Points from TopEye			Points derived from waveforms			
		[m ²]	Total	First	Last	Total	First	Last	Middle
1	deciduous (leaf- on)	21,9	768	503	265	943	553	280	110
2	deciduous (leaf- off)	72,2	5594	4168	1426	7436	4648	1548	1240
3	coniferous	22,2	1109	882	227	2555	1483	727	345
4	deciduous (leaf- on) and coniferous	86,7	1602	1191	411	3261	1678	969	614
5	meadow	28,3	362	362	0	456	456	0	0

Point distribution

Point distribution

Tree species classification

- Metrics from 3D points as features
 - Density dependent variables: Proportion of the number of points in a given tree height segment to the total number of points
 - Height dependent variables: Percentiles of the point height distribution

Naesset.

2003

European beech and Norway spruce

Josef Reitberger

February 2006

Examples

- Metrics are clearly different for the two tree species in the upper parts of the trees
- Classification appears highly promising

Conclusions and outlook

The potential of full waveform data for the analysis of tree structures is shown

Significantly more points from the waveforms than from the system

=> More detailed tree structures

Internal quality measures are provided by the adjustment

=> Quality control

 Relieable metrics can be provided by just using the geometry of the derived points

=> Tree species classification appears highly promising

 Further steps are the use of the point attributes (Intensity, Width) and the directly use of the signal information of the waveform

Thank you

