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The extremely long runout distances of snow and rock avalanches im-
plies low friction. Why this friction is so low, however, has never been 
fully explained. In the following we show that low friction is the result of a 
mechanical regulation involving the production of random kinetic energy 
at the basal sliding surface of the avalanche. Observations show that the 
avalanche flow height profile can be divided into three layers: the slip-
volume, the fluidized layer and flow bulk. The thickness of these layers 
is determined by the avalanche itself, primarily by the slip-velocity – the 
velocity at the interface between the slip volume and fluidized layer. An 
energy analysis reveals that both heat and random kinetic energy of the 
granules are produced in the slip volume. This random energy diffuses 
into the adjoining layer and creates the fluidized layer, thereby producing 
an apparent reduction in the flow friction. The penetration depth of the 
diffused random kinetic energy defines the depth of the fluidized layer. 
The partitioning of energy in the boundary layer into heat and kinetic 
energy (which is later dissipated in the fluidized layer) represents a com-
petition between two mechanical processes that the avalanche can self-
regulate to minimize frictional resistance.

Die erstaunlich langen Auslaufstrecken bei Schneelawinen wird auf ei-
nen kleinen Reibungskoeffizienten abgeschoben. Wie die ser allerdings 
zustande kommt, wird nicht erklärt. In der vorliegenden Arbeit wird der 
Grund in einer Art Selbstregulierung gesucht. Dazu wird die Fliesshöhe 
in drei Schichten unterteilt – Die Gleitschicht (slip volume), die Flies-
schicht (fluidized layer) und den festen Block (bulk). Die Aufteilung in 
Fliessschicht und Block ist historisch bedingt. Die Dicke dieser Schichten 
wird von der Lawinen selber bestimmt, und zwar im wesentlichen durch 
die Gleitgeschwindigkeit (slip velocity), das heisst die Geschwindigkeit 
der Grenzschicht zwischen Gleit- und Fliessschicht. Eine Energiebe-
trachtung zeigt, dass im Gleitvolumen nicht nur Wärme erzeugt wird, 
sondern auch freie (random) kinetische Energie erzeugt wird, in Form 
von bewegten Teilchen die sich in beliebiger Richtung bewegen. Diese 
Energie (Bewegung) diffundiert in die angrenzende Schicht und erzeugt 
damit die Fliessschicht. Sie bewirkt eine scheinbare Erniedrigung des 

Reibungskoeffizienten. Die Eindringtiefe dieser diffundierenden Energie 
in den festen Block definiert die Dicke der Fliesschicht. Die Aufteilung 
der Energie in Gleitschicht in Wärme und kinetische Energie, welche erst 
in der anschliessenden Fliesschicht dissipiert wird, führt zu einer Kon-
kurrenzsituation, welche die Lawine ausnützt, um so wenig wie möglich 
Reibungswärme zu erzeugen.

Introduction

A long-standing problem in understanding the motion 
of large catastrophic avalanches of debris, rock or snow 
is finding a physical mechanism that explains the extre-
mely low friction values that result in far-reaching, and 
therefore potentially dangerous, runout distances. Various 
mechanisms have been postulated to explain this pheno-
mena, including heating/lubrication (Hsü, 1975), dynamic 
fragmentation (Davies et. al., 1999) or granular fluidiza-
tion (Collins and Melosh, 2003).

In this paper we address this problem by deriving ge-
neral relationships between the basal work rate and the 
production of random kinetic energy (granular agitation) 
and internal energy (heat) in rapid mass flows. These re-
lations place thermodynamic restrictions on constitutive 
formulations describing the motion of rock or snow ava-
lanches. Subsequently, they can be used to test constitu-
tive models describing the interaction of a rapid mass flow 
with the basal running surface, i. e. the physical mecha-
nisms postulated to explain the extreme mobility of large 
avalanches. In the following we present a constitutive 
formulation based on these “fluctuation-dissipation rela-
tions” and apply it to model shear stresses measured in 
granular and snow avalanche chutes (Fig. 1).
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The fluctuation-dissipation relations, however, cannot 
explain the low friction values alone. Therefore, we must 
also address the question if flow states exist in which the 
friction/dissipation is minimal within the given flow cons-
traints (mass flux, slope angle, etc.). Mathematically, this 
is a variational problem which requires identifying com-
peting frictional processes in both the basal shear layer 
and avalanche bulk. Interestingly, we find that not only do 
such flow states exist, but they are also remarkably stable 
with respect to the production of random kinetic energy 
in the flow system (Bartelt et al. 2005).

Fluctuation-Dissipation Relations

When an avalanche descends down a mountain slope, 
gravitational potential energy is transformed into trans-
lational kinetic energy and internal energy. Gravitational 
work raises both the speed and thermal temperature of the 
flowing mass. Three physical processes are responsible for 
the heat rise: (1) the sliding shearing at the basal plane, 
(2) the viscous shearing within the avalanche bulk which 
arises from the enduring frictional contact between granu-
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les of rock or snow and (3) the random inelastic collisions 
between granules (Bartelt et al. 2006). These three pro-
cesses are mathematically parameterized by the avalanche 
slip velocity u0 (x), the velocity distribution within the ava-
lanche body u(x, z) and the square of the random granule 
velocity f(x, z), representing the random kinetic energy of 
the flow (Fig. 2). The functions u0 (x), u(x, z), and f(x, z) 
are presently unknown; however, their values define the 
frictional work rates opposing gravity and thereby the in-
ternal energy distribution in the falling mass. These func-
tions cannot be found without postulating some constitu-
tive relations for the basal and viscous shearing and the 
creation, transport and destruction of random kinetic en-
ergy within the avalanche. Further, we expect the random 
kinetic energy f(x, z) will influence the work done by the 
enduring frictional contacts between granules and thus 
the velocity distribution u(x, z).

The total frictional work done by the three processes 
can be defined at any position x, without exactly stipula-
ting the constitutive relations:

 (1)

Figure 1:   Large scale chute experiments with snow (left) and laboratory chute experiments with granular materials are used 
to measure basal shear stresses S and normal stresses N (middle).  The chutes are instrumented with shear and 
normal force plates and optical flow height sensors (right).

Figure 2:  The avalanche profile is divided into three layers: the slip volume (boundary layer), fluidized layer and 
flow bulk, defined where by f(x, z) = 0. At the interface between the slip volume and fluidized layer we 
have the slip velocity u0 (x) and injection of random kinetic energy Q

.
“0. 

When an avalanche descends down a mountain slope, gravitational potential energy is 
transformed into translational kinetic energy and internal energy. Gravitational work raises 
both the speed and thermal temperature of the flowing mass. Three physical processes 
are responsible for the heat rise: (1) the sliding shearing at the basal plane, (2) the 
viscous shearing within the avalanche bulk which arises from the enduring frictional 
contact between granules of rock or snow and (3) the random inelastic collisions between 
granules (Bartelt et al. 2006). These three processes are mathematically parameterized 
by the avalanche slip velocity , the velocity distribution within the avalanche body 
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kinetic energy of the flow (Fig. 2). The functions , and  are presently 
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where is the total frictional work rate of the three non-conservative processes 
( ); is the basal shear rate ( ); is the viscous shear rate ( ) and 

is the work done by the random collisions ( ). A double prime subscript denotes 
a quantity per unit area whereas a triple prime subscript a quantity per unit volume. 
Integration over the avalanche flow height is required to add the work done in the 
avalanche bulk to the work done at the basal shear layer. The integration projects the 
volumetric work rates on to the basal surface. 
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The total rise in internal energy E ��� can likewise be stated:
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lanche body – by inelastic collisions. The random motion 
of the granules represents an intermediate stage in which 
potential energy is briefly stored as random kinetic energy 
before it too is dissipated into heat. Thus, part of the basal 
shear work raises the thermal temperature of the system, 
while the remaining part, raises the fluctuation energy, 
also called the granular temperature. Eq. 7 is a general 
requirement for granular avalanche flow in steady-state; 
whereas Eq. 8 has much wider application because it is 
also valid for non-steady flows.

Constitutive Model for Basal Shearing
A constitutive model for basal shear S0 that satisfies the 
fluctuation-dissipation relation  is

   is 

  (9)

where μ(Q
.
 “0) is the basal friction coefficient, which depends 

on the fluctuation energy input Q
.
 “0; N0 is the normal stress 

acting on the basal shear plane. A relation for μ(Q
.
 “0) which 

agrees well with shear and normal stress measurements of 
granular avalanches captured in simple chute experiments 
(Figs. 3 and 4) is

  
(10)

where μs is the “static” coefficient of friction; μd is the 
“dynamic” coefficient of friction, μd > μs. The quantity
 
zed regime

  (11)

An experimentally determined relation for Q
.
 “0 is

    
  (12)

where B is a function of h and u0 which defines how the 
static flow changes to the dynamic flow state, given by μd. 
That is, the relation theoretically fits the following limit 
conditions. When
   
                   then  (13)

and

                   then  (14)

 
The function B depends on both the flow material and the 
roughness of the flow surface. Note that when

                   then  (15)
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nc the total frictional work rate of the three non-
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. 

“
0 is the basal shear rate 

(W/m2); W
.
 “‘v   is the viscous shear rate (W/m3) and W

.
 “‘r  is 

the work done by the random collisions (W/m3). A double 
prime subscript denotes a quantity per unit area whereas 
a triple prime subscript a quantity per unit volume. Inte-
gration over the avalanche flow height h is required to add 
the work done in the avalanche bulk to the work done at 
the basal shear layer. The integration projects the volume-
tric work rates on to the basal surface.

The total rise in internal energy E
.
“ can likewise be 

stated: 

  
(2)

where the sub- and superscripts of E have the same mea-
ning as in Eq. 1.

In steady-state, the integrated rise in internal energy 
E
.
“ is in balance with the gravitational work rate W

. 
“
g, or al-

ternatively, the work done by the non-conservative forces:

  (3)

The internal energy rise due to the random inelastic 
collisions E

.
“
r is certainly non-zero, for all non-zero distri-

butions of f(x, z). However, the mechanical work done, in 
the time-averaged mean, by the random collisions W

. 
“
r is 

zero, since the randomness of the collisions is defined to 
have no positive or negative bias with respect to the mean 
velocity of the avalanche. The random collisions can neit-
her accelerate nor decelerate the flow. Therefore,

     for all z.         (4)

Because E
.
“  = W

. 
“
nc  in steady state, we have
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since the internal energy rise and work done by the vis-
cous shearing is in balance
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The quantity Q
.
 “0 represents the flux of fluctuation (ag-

itation) energy injected at the base of the avalanche. Eq. 8 
states that the total frictional work done at the base of the 
avalanche W

. 
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0 can be split into two parts: Part of the basal 

shear work is immediately dissipated directly into heat E
.
“
0 

while the remaining work produces random kinetic energy 
Q
.
 “0, which in steady-state is later dissipated – in the ava-
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Figure 4: Plot of measured S/N ratio as a function of Froude number Fr for two granular experiments a: 
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Figure 3:  Measured shear S and normal N forces for a: granular experiments and b snow chute experiments. 
A simple Mohr-Coulomb relation appears adequate Eq. 9. See Figure 3, however, for non-linear rela-
tion between S/N and Fr number.
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Figure 5:  Right: Fit of experimental to Voellmy-fluid type relation (Eq. 20) used by Norem et al. (1987). The model can 
match shear stresses at the avalanche front, but not at the avalanche tail.  Left: Fit of the same experiment with 
the constitutive relation proposed by Job et al. (2006).
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“Chezy” turbulence-like parameter (see Salm (1993).) This law can be applied to simulate 
the measured basal shear stresses in chute experiments; however, it underestimates the 
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experiment with the constitutive relation proposed by Job et al. (2006). 
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where is the conduction coefficient governing the diffusion of fluctuation energy in the 
fluidized layer and 

k
�  accounts for the destruction of fluctuation energy by inelastic 

collisions. The solution to this equation is 

�
�
�

�
�
� �

� �
z

efzf 0)(           (22) 

where is the fluctuation energy at the base of the flow 0f 0�z , which is determined from 
the boundary condition 

��
�

��
�
�
�

�
�
�

�
�

��� � kuB
u

Qf �

0

0
0

�          (23) 

The production of random kinetic energy is simply given by , where  is a 
“Chezy” turbulence-like parameter (see Salm (1993).) This law can be applied to simulate 
the measured basal shear stresses in chute experiments; however, it underestimates the 
basal friction at the tail of the flow (see Fig. 5). 
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The fluctuation energy distribution  influences the translation velocity distribution in 
the fluidized layer . Two possible interactions are: 
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Here experimental evidence is failing to describe the interaction between  and .
Bartelt et al. (2006) applied the second constitutive formulation and found that they could 
accurately describe the plug-like velocity distributions in wet snow avalanches. Energy 
dissipation decreases in the fluidized layer, with increasing supply of fluctuation energy 

 in both constitutive formulations. Finally, it can be shown that the interaction between 
the viscous shearing and the random fluctuations is reciprocal in the second formulation, 
fulfilling the thermodynamic constraint that the interaction between two dissipative 
processes is defined by a single and therefore unique heat producing mechanism (see 
Bartelt et al., 2006). 
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the second constitutive formulation and found that they 
could accurately describe the plug-like velocity distributi-
ons in wet snow avalanches. Energy dissipation decreases 
in the fluidized layer, with increasing supply of fluctuation 
energy Q

. 
“
0  in both constitutive formulations. Finally, it can 

be shown that the interaction between the viscous shea-
ring and the random fluctuations is reciprocal in the se-
cond formulation, fulfilling the thermodynamic constraint 
that the interaction between two dissipative processes is 
defined by a single and therefore unique heat producing 
mechanism (see Bartelt et al., 2006).

Mechanical Work/Friction Minimization

Although the work balanced constitutive formulation 
accurately fits the experimentally measured shear stress 
(Fig. 4), it does not explain the extreme mobility of large 
mass flows. In fact, the theory suggest that with increasing 
velocity and mass, an avalanche will be governed by the 
dynamic coefficient of friction μd which is always larger 
than μs.

To explain the reduced friction we must investigate 
the total, non-conservative work (Eq. 1) W

. 
“nc which con-

sumes at any instant only part of the gravitational work 
rate W

. 
“g . The remaining part of the gravitational work rai-

ses the translational kinetic energy of the avalanche. Ob-
viously, the smaller the frictional work rate W

. 
“nc, the higher 

the speed of the movement.
In order to find the minimal frictional work rate, 

we return to Eq. 1, which divides the work rate into two 
parts: 

  (27)

The work done in the basal slip volume W
. 
“
0 increases 

as a function of the slip velocity u0 (Fig. 6) since

  (28)

However, the viscous shear work done in the fluidized 
layer W

. 
“v

  (29)

decreases as a function of the slip velocity u0 (Bartelt et 
al., 2005). As u0 approaches the mean velocity of the ava-
lanche u, shear deformations, and therefore the frictional 
work rate, will decrease to zero (Eq. 29, Fig. 6). This ana-
lysis shows that with respect to u0, basal shearing in the 
slip volume and viscous shearing in the fluidized layer are 
competing processes. When the one increases, the other 
will decrease and vice-versa. Therefore, there exists a u0 at 
which the sum of the two frictional work rates is minimal 
(Fig. 6).

This is an intriguing result because it suggests that 
if avalanches can find a u0 that minimizes the frictional 
work rate, they will be travelling as fast, and therefore, as 
far as they possibly can within the governing constraints 
such as the mass flow and slope angle. Interestingly, the 
parabolic shape of the total frictional work curve (Fig. 6) 

indicates that the flow system is stable with respect to all 
perturbations in slip velocity u0 in the sense of Lyapunov 
(Bartelt et al., 2005). Thus, once in this minimal flow state, 
any perturbation of u0 at the slip-volume/fluidized layer 
interface, will return to the state of least frictional work. 
This result is only valid for cases where the fluctuation en-
ergy production Q

. 
“
0  is consumed entirely within the flui-

dized layer hf < h.

Conclusions

The idea that the granules in a large avalanche have 
some random kinetic energy – as well as their translatio-
nal kinetic energy – is well accepted. However, important 
questions remain: where is the source of this granular en-
ergy, how strong is it and how and where is it dissipated? 
Further, how does the random kinetic energy interact with 
other frictional mechanisms? The work-energy analysis 
suggests some answers. 

The only plausible source of the random kinetic en-
ergy is at the bottom of the avalanche. Furthermore, this 
source must have a counterpart, a sink – especially when 
the avalanche has reached a terminal velocity and steady 
state. This result leads us to assume two volumes: the 
source in the slip volume, and the sink in the fluidized 
layer. These two volumes are created by the movement of 
the avalanche, or more precisely by the slip velocity, defi-
ned as the velocity at the boundary between slip and flu-
idized layer, which is of course related to the “avalanche 
speed”, or the front velocity of the flow. The random ki-
netic energy produced in the slip layer diffuses into the 
bulk and forms the fluidized layer. No fluidized layer can 
exist when there is no random kinetic energy produced in 
the slip layer. This random kinetic energy in the fluidized 
layer reduces the frictional forces acting on the avalan-

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

W''
0
 (slip volume)

W''
v
 (fluidized layer)

W''
nc

 = W''
0
  + W''

v
 

Slip velocity u
0
 (ms-1)

W''
0
 (slip volume)

(u
0
)

min

(W''
nc

)
min

W''
v
 (fluidized layer)

.

.

.

.

...

.

.
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“v . There exists a slip velocity u0 that mini-

mizes the sum. W
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“
0 and W

. 
“v  are competing dissipa-

ting processes.

The fluidized layer height is the height at which fh
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The fluctuation energy distribution  influences the translation velocity distribution in 
the fluidized layer . Two possible interactions are: 
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�� The fluctuation energy produces a dispersive pressure which acts against the 
overburden stress 
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Here experimental evidence is failing to describe the interaction between  and .
Bartelt et al. (2006) applied the second constitutive formulation and found that they could 
accurately describe the plug-like velocity distributions in wet snow avalanches. Energy 
dissipation decreases in the fluidized layer, with increasing supply of fluctuation energy 

 in both constitutive formulations. Finally, it can be shown that the interaction between 
the viscous shearing and the random fluctuations is reciprocal in the second formulation, 
fulfilling the thermodynamic constraint that the interaction between two dissipative 
processes is defined by a single and therefore unique heat producing mechanism (see 
Bartelt et al., 2006). 
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decreases as a function of the slip velocity  (Bartelt et al., 2005). As approaches the 
mean velocity of the avalanche , shear deformations, and therefore the frictional work 
rate, will decrease to zero (Eq. 29, Fig. 6). This analysis shows that with respect to ,
basal shearing in the slip volume and viscous shearing in the fluidized layer are 
competing processes. When the one increases, the other will decrease and vice-versa. 
Therefore, there exists a at which the sum of the two frictional work rates is minimal 
(Fig. 6).
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che. The two-volume model has already proved helpful in 
constructing a constitutive relation that accurately models 
the measurements of basal shear stresses in laboratory ex-
periments and snow chute experiments.

However, the diffusion of random kinetic energy in 
the fluidized layer also causes a reduction in the slip ve-
locity, which, in turn, throttles the production of random 
kinetic energy. The non-linear interaction between the slip 
volume and fluidized layer can be viewed as competing 
mechanisms. 

Interestingly, the competition to consume gravitatio-
nal work at the base of the avalanche implies that there 
is a slip velocity at which the dissipated work, or the heat 
produced, is minimal. All perturbations in slip velocity 
caused by changes in boundary conditions, such as slope 
angle and roughness, will be driven to assume this mini-
mal value. 
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