Principles and Development of Bio-Inspired Materials, Vienna, 14 April 2010

Topological Interlocking as a Materials Design Concept

Yuri Estrin

ARC Centre of Excellence for Design in Light Alloys, Dept. of Materials Engineering, Monash University CSIRO Division of Process Science and Engineering World-Class University Program, Seoul National University

MONASH University

Collaboration with:

School of Civil and Resource Engineering, UWA:

- Arcady Dyskin
- Elena Pasternak
- Chuan Khor

Clausthal University of Technology:

- Stephan Schaare (former PhD student)
- Andrey Molotnikov (now at Monash)

Bremen International University:

Alexei Kanel-Belov

Bremen University:

• Thomas Krause

Grenoble University:

- Yves Brechet
- Marc Fivel

Geometry inspired materials people

Pushing the performance limits

Benefits of fragmentation

Olivier Bouaziz, Arcelor-Mittal, France

Prevention of crack propagation

'Delamination' due to stress concentration.

'Delamination' leads to arrest of crack.

Missing adhesion isolates the failed element and prevents crack propagation across interfaces.

Two classes of interlocking shapes

- Interlocking of identical convex elements
- Interlocking by nonplanar surfaces (Osteomorphic blocks)

Y. Estrin et al., MRS Proceedings, Symp. LL, 2009

Osteomorphic block

Wall assembly

Assemblies of osteomorphic blocks

Column structure

Point loading of fragmented plate

Fracture resistance of the assembly

Massive plate

Failure of a massive plate

Example with concrete

fragmented plate

massive plate

Prevention of crack propagation

'Delamination' due to stress concentration.

'Delamination' leads to arrest of crack.

Missing adhesion isolates the failed element and prevents crack propagation across interfaces.

High tolerance to local failures; large percolation limit

Percolation limit:

$$p_c(N) = p_c^{\infty} + 0.8186 N^{-0.827}$$

$$p_{c}^{\infty} = 0.2462$$

A.Molotnikov

Protective cladding based on osteomorphic tiles

Osteomorphic tiles for cladding of <u>curved</u> surfaces Space shuttle?

Endeavour tiles

Improved damping

pendulum_4

Manufacture of blocks (student project)

Properties of assemblies of osteomorphic blocks

- High resistance to fracture propagation
- High tolerance to missing blocks
- Low bending rigidity
- Property of self-adjustment
- Versatile applications

Assembly of tetrahedra

Concentrated load testing

Residual deflection

Blocks themselves show no plastic deformation

- The assembly is still holding
- The elements rotate and 'lock' the indentor

Tolerance to missing blocks

Assemblies with missing blocks retain their integrity.

Assemblies of tetrahedra and related structures

Square-based interlocking

Middle plane section

Top

section

|+ -|1 . |1 .

Assembly of tubular elements

"Smooth" surface of the elements, very high porosity and permeability of the assembly

Hexagon-based interlocking

Interlocking of Platonic Bodies

Cubes 1,3,5 and 2,4,6 hinder downward and upward displacements, respectively.

Assemblies of octahedra

Assembly of dodecahedra

Assembly of icosahedra

Assembly of cubes

Deformation of assembly of cubes

Concentrated load

Template for assembly of cubes

Truncated cubes

Deformation of assembly of cubes

Negative stiffness in unloading of assembly of cubes

Tunable stiffness

Experiment vs. simulation

Experiment vs. simulation

S. Arndt

Possible mechanism?

Energy absorption

Multi-material mix: Example of PVC and steel cubes

Random arrangement

20% steel blocks

Interlocking in turtle suture

S. Krauss,... P. Fratzl, R. Shahar, Adv. Mater. 2009

Properties of assemblies of cube shaped blocks

- High resistance to fracture propagation
- Low bending rigidity
- Weight reduction
- Localisation of rotations
- Anomalous unloading response
- No tolerance to missing blocks
- Template required for assembling

Properties of assemblies of tetrahedral blocks

- High resistance to fracture propagation
- Tolerance to missing blocks
- Low bending rigidity
- Weight reduction
- Permeability of assemblies
- Assembling with template

Possible applications

- Architecture and Civil Engineering
- Automotive (crash protection)
- Armor
- Anti-terror barriers; road safety barriers
- Tooling (replacement of critical parts of a structure only)
- Self-adjusting assemblies of modules or containers
- Protective layers of various kinds
- Chemical Engineering
- Nanotechnology

Ref. A. Dyskin, Y. Estrin, et al., Acta Astronautica 57, 10-21 (2005)