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Introduction

• Plants are typically loaded in bending by 
wind and in  compression by self-weight

• Minimizing mass reduces metabolic 
cost to grow material

• Examine strategies used in plants to 
reduce mass
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Introduction

• Wood: Uniform honeycomb-like 
structure

• Palm stem: Radial density gradient
• Plant stem: Cylindrical shell with 

compliant core
• Monocotyledon leaves: Sandwich 

structures
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Wood:
Honeycomb-Like Microstructure

Cedar
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Wood: Honeycomb Models
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Wood in Bending: E1/2/ρ 
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Stiffness performance 
index for wood in
bending is similar to 
that for best
engineering composites

Wood cell wall
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Wood in Bending: σf
2/3/ρ

σ f
*( )2 /3

ρ* =
σ ys( )2 /3

ρs

ρs

ρ*

⎛
⎝⎜

⎞
⎠⎟

1/3

Strength performance 
index for wood in
bending is similar to 
that for best engng 
composites
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Wood

• Tree in bending loaded as cantilever
• Radius decreases with distance away 

from the ground
• Further increases mechanical 

performance of the tree
• E = constant, r = r (z)
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Palm Stem: 
Radial Density Gradient

(Also Bamboo)
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Palm Stem:
A Different Strategy

• Stem has constant 
diameter: r = constant

• As palm grows taller, it 
increases the density 
of the material towards 
its periphery

• Cell wall thickness 
increases towards 
periphery of stem and 
towards the base of 
the stem E = E (r, z) Coconut Palm

http://en.wikipedia.org/wiki/
Image:Palmtree_Curacao.jpg
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Palm: Microstructure of
Peripheral Stem Tissue

Young Old

6 μm 10 μm

Rich, 1987

Kuo-Huang et al., 2004
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Palm Stem: Density Gradient

Rich, PM (1987) Bot.Gazette 148, 42-50.
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Palm Stem: 
Density at Breast Height

A single mature palm has a similar range of 
density as nearly all species of wood combined

Rich, PM (1987) Bot.Gazette 148, 42-50.

Densities
of common
woods
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Palm Stem: Density Gradient
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Palm Stem: Mechanical 
Properties vs. Density

Rich, PM (1987) Bot.Gazette 148, 42-50.
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Density Gradient:
Iriartea gigantea
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Iriartea palm: n = 2, m = 2.5, (EI)gradient/(EI)uniform = 2.5

Similar calculation for Welfia georgii, gives
(EI)gradient/(EI)uniform = 1.6



17

Palm Stem:
Bending Stress Distribution

σ (y) = Eε = Eκ y
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Iriartea gigantea: m = 2.5, n =2

σ ∝ r6
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Palm Stem:
Bending Strength Distribution
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Iriartea gigantea: n = 2, q = 2

σ * ∝ r4

Strength matches
bending stress distribution
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Plant Stems:
Cylindrical Shells with 

Compliant Cores

(Also in Animal Quills,
Toucan Beak)
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Plant Stems

Milkweed Grassy stem
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Milkweed Stem
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Grassy Stem

Hollow struts
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Plant stems

• Circular tube cross-section
• Resists bending (wind loads)
• Maximize shape factor

• Maximize a/t, but limited by local buckling and 
ovalization

• Plant stems have compliant core (“core-rind 
structure”)

Φ =
4π I
A2 =

a
t
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Plant Stems: Bending

• Core resists ovalization and increases 
local buckling resistance
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Plant Stems: Bending

• Local buckling occurs when normal stress in 
compressive side of cylinder equals critical 
stress for axisymmetric buckling under 
uniaxial stress

• Hollow cylinder:

• Cylinder with compliant core:
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Plant Stems
• Foam-like core can act like elastic foundation supporting outer 

shell, increasing local buckling moment, Mlb, reducing buckling λ

Hollow tube

Ec 
increasing
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Plant Stems

Hollow tube
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Plant Stems

• Within the core stress decays as move 
radially inward, away from the shell

• Stresses less than 5% of maximum at a
radial distance of 5λcr

• Can remove inner core, leaving core 
thickness, c = 5λcr
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Plant Stems

25

50

59

a/t

3.270.77YesSedge 
grass, 
common 
barley

3.811.26YesOat, rye 
grasses

3.811.37YesTall blue 
lettuce

c/λcrMlb/MeqElastic 
foundation

Species

Core increases buckling resistance for high a/t
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Monocotyledon Leaves:
Sandwich Structures

(Also in Skulls, Cuttlefish 
Bone, Horseshoe Crab Shell)



31Iris Bulrush

Monocotyledon Leaves: 
Sandwich Beams
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Sandwich Structures: Leaves

Iris leaf

Bulrush leaf1mm

0.5 mm

Sclerenchyma
Parenchyma
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Sandwich Structures: Leaves

Lolium perenne
(Rye grass)

Stipa gigantea
(Giant feather

grass)

Vincent, 1982,1991

Black = sclerenchyma
White = parenchyma
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Monocotyledon Leaves

• Fibers (sclerenchyma) along outer surface of 
leaves

• Foam-like cells (parenchyma) or ribs in core 
• Acts like structural sandwich panel
• Increase in moment of inertia by separating 

stiff “faces” by a lightweight “core”
• Large surface area for photosynthesis
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Sandwich Beam Deflection
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Pl 3
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Iris Leaves

t = 30 μm

c = 0.5 to 3.0 mm

Ef = 8.2 GPa

Gc = 2 MPa

Measured stiffnesses (N/mm): 0.66 0.54 0.41 0.25
Calculated stiffnesses (N/mm): 1.21 0.78 0.51 0.29

Calculated/measured: 1.83 1.44 1.24 1.16
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Conclusion

• Wood
– Uniform honeycomb increases E1/2/ρ, σf

2/3/ρ
– Constant ρ, E, σf, vary r(z) in tree

• Palm stem
– Radial density gradient
– Constant r, vary ρ(r), E(r), σf(r) in palm stem
– Increases (EI) relative to uniform distribution of 

solid
– Stress distribution across radius matches strength 

distribution
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Conclusion

• Plant stems
– Cylindrical shell with compliant core
– Increases buckling resistance over equivalent 

hollow circular tube for large a/t

• Monocotyledon leaves
– Sandwich structure, efficient in bending
– Leaves provide own structural support as well as 

area for photosynthesis
– Rectangular cross-section maximizes surface area 

for photosynthesis
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