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Introduction

* Plants are typically loaded in bending by
wind and in compression by self-weight

 Minimizing mass reduces metabolic
cost to grow material

 Examine strategies used in plants to
reduce mass




Introduction

Wood: Uniform honeycomb-like
structure

Palm stem: Radial density gradient

Plant stem: Cylindrical shell with
compliant core

Monocotyledon leaves: Sandwich
structures
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Wood: Honeycomb Models
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Wood in Bending: EY4/p

1. MODULUS-DENSITY
YOUNG'S MODULUS E
(G=3E/8:iK=E)
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Stiffness performance
iIndex for wood in
bending is similar to
that for best
engineering composites
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Wood in Bending: ¢°3/p

2. STRENGTH-DENSITY ~ [esnemmus f2ciouoo
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Wood

Tree In bending loaded as cantilever

Radius decreases with distance away
from the ground

Further increases mechanical
performance of the tree

E = constant, r =r (2)




Palm Stem:
Radial Density Gradient

(Also Bamboo)




Palm Stem:
A Different Strategy

e Stem has constant
diameter: r = constant

e As palm grows taller, it
Increases the density

of the material towards

Its periphery

Cell wall thickness

Increases towards

periphery of stem and

towards the base of
the stem E — E (r’ Z) Coconut Palm

Image:Palmtree_Curacao.jpg 10




Palm: Microstructure of
Perlpheral Stem Tlssue
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Rich, 1987

Ja 10um_ Kuo-Huang et al., 2004
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Palm Stem: Density Gradient

OLD STEM
L.ow

Density

HEIGHT

Density

YOUNG STEM

periphery  center periphery periphery  center periphery

Rich, PM (1987) Bot.Gazette 148, 42-50.




Palm Stem:
Density at Breast Height

Welfia wet
RS

(g/cm’)

| Densities
Welfia NJriarlea wet
drv\ = of common
woods

DENSITY

Irigrtea dry——

0O b
Periphery ————————— 3 Center

RADIAL POSITION ({cm)

A single mature palm has a similar range of
density as nearly all species of wood combined

Rich, PM (1987) Bot.Gazette 148, 42-50.




Palm Stem: Density Gradient
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Palm Stem: Mechanical
Properties vs. Density
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Density Gradient:
Irlartea gigantea

Crr’
(EI )gradient —

mn+4

2

(EI )gradient . 4 [ n+ 2) i

(EI )uniform ) mn -+ 4

Iriartea palm: n =2, m = 2.5, (El)yagient (EDunitorm = 2-5

Similar calculation for Welfia georqii, gives
(El)gradient/(El)uniform =1.6




Palm Stem:
Bending Stress Distribution

o(y)=Ee=Exy

o(r,0) = C(Lj kT cosd ocr™*
rIO

Iriartea gigantea: m = 2.5, n =2

Ol




Palm Stem:
Bending Strength Distribution

Iriartea gigantea: n=2,q =2

* 4

Strength matches
bending stress distribution




Plant Stems:
Cylindrical Shells with
Compliant Cores

(Also In Animal Quills,
Toucan Beak)
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Milkweed Stem
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Mag= 25X
EHT =20.00 kv

Grassy Stem

Tall Grass-Like
’ Stem

| Mag= 800X
EHT = 20.00 kV

Detector = BSE
Date :30 Sep 2002

Hollow struts

Detector = BSE
Date :30 Sep 2002




Plant stems

Circular tube cross-section
Resists bending (wind loads)
Maximize shape factor

Maximize a/t, but limited by local buckling and
ovalization

Plant stems have compliant core (“core-rind
structure”)




Plant Stems: Bending

e Core resists ovalization and increases
local buckling resistance




Plant Stems: Bending

e Local buckling occurs when normal stress In
compressive side of cylinder equals critical
stress for axisymmetric buckling under
uniaxial stress

| M 0.939Eat’
» Hollow cylinder: b= 5

e Cylinder with compliant core:

Ea‘t E
Mlb: 7T f{é core’%}

J1—1V r Ee




Plant Stems

 Foam-like core can act like elastic foundation supporting outer
shell, increasing local buckling moment, M,,, reducing buckling A

E./E=0
— — E/E=0.0001
- === E/E=0001
e e E/E=0.01

Hollow tube
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Plant Stems

o Within the core stress decays as move
radially inward, away from the shell

e Stresses less than 5% of maximum at a

radial distance of 5\,

e Can remove inner core, leaving core
thickness, ¢ = 54,




Plant Stems

Species Elastic M,,/M
foundation

Tall blue Yes 1.37
lettuce

Oat, rye Yes 1.26
grasses

Sedge Yes 0.77
grass,
common
barley

€q

Core increases buckling resistance for high a/t




Monocotyledon Leaves:
Sandwich Structures

(Also In Skulls, Cuttlefish
Bone, Horseshoe Crab Shell)




Monocotyledon Leaves:
Sandwich Beams
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Sandwich Structures: Leaves

Sclerenchyma
Parenchyma

Iris leaf

Bulrush leaf




Sandwich Structures

Stipa gigantea
(Giant feather
grass)

01mm

Lolium perenne
(Rye grass)

Black = sclerenchyma
White = parenchyma

Vincent, 1982,1991




Monocotyledon Leaves

Fibers (sclerenchyma) along outer surface of
leaves

Foam-like cells (parenchyma) or ribs in core
Acts like structural sandwich panel

Increase iIn moment of inertia by separating
stiff “faces” by a lightweight “core”

Large surface area for photosynthesis




Sandwich Beam Deflection

Ebtc”
Flexural rigidity: Shear rigidity: (AG)eq ~ bcG,

Cantilever: B, =3B, =1




Iris Leaves

, = S0 i E, = 8.2 GPa

c=05t03.0mm G.=2MPa

Measured stiffnesses (N/mm): 0.66 0.54 0.41 0.25
Calculated stiffnesses (N/mm): 1.21 0.78 0.51 0.29

Calculated/measured: 1.83 144 124 1.16

36




Conclusion

« Wood

— Uniform honeycomb increases EY?/p, 6?3/p
— Constant p, E, oy, vary r(z) in tree

e Palm stem
— Radial density gradient
— Constant r, vary p(r), E(r), o(r) in palm stem

— Increases (El) relative to uniform distribution of
solid

— Stress distribution across radius matches strength
distribution
37




Conclusion

* Plant stems
— Cylindrical shell with compliant core

— Increases buckling resistance over equivalent
hollow circular tube for large a/t

 Monocotyledon leaves
— Sandwich structure, efficient in bending

— Leaves provide own structural support as well as
area for photosynthesis

— Rectangular cross-section maximizes surface area
for photosynthesis
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