M. Elices, G.R. Plaza, J. Pérez-Rigueiro, G.V. Guinea

Departamento de Ciencia de Materiales. ETSI Caminos. Universidad Politécnica de Madrid (Spain)

Bio-inspiration from Spider's silks

Principles and Development of Bio-Inspired Materials

Vienna, April 14th 2010

Tunability of spider silk fibers

Synthesis of tunable bio-inspired fibers

Tunability of spider silk fibers

Synthesis of tunable bio-inspired fibers

Motivation Mechanical properties

Spider silk combines large tensile strength and strain at breaking

Motivation The many faces of spider silk

Tunability of spider silk fibers

Synthesis of tunable bio-inspired fibers

Tunability of spider silk Variability of spider silk in the web

Silk fibers retrieved from the web show a large variability

Tunability of spider silk Adapting silk's properties

Spinning of the safety line

Tunability of spider silk Adapting silk's properties

Reproducibility of spider silk spun during undisturbed climbing

Tunability of spider silk Supercontraction

Immersion in water reduces the length of the fiber down to a 50 % of its initial value

Tunability of spider silk Existence of a ground state

Maximum supercontraction allows reaching a ground state

Tunability of spider silkWet stretching process

 $\alpha = L_C/L_{SC}-1$

The wet stretching process allows modifying the properties of spider silk in a predictable and reproducible way

Tunability of spider silk Wet stretching process

The wet stretching process allows modifying the properties of spider silk in a predictable and reproducible way

Tunability of spider silk fibers

Synthesis of tunable bio-inspired fibers

Synthesis of bio-inspired fibers Wet spinning process

Variables of the process:

Composition of the dope: silk fibroin in NMMO·H₂O Composition of the coagulating bath: Ethanol Take up speed Post-spinning drawing

Synthesis of bio-inspired fibers Regenerated silk fibroin (RSF)

Silkworm silk fibers do not show supercontraction

Synthesis of bio-inspired fibers Immersion drawing RSF

Immersion post-spinning drawing (IPSD) improves the tensile behaviour, and...

Synthesis of bio-inspired fibers Immersion drawing RSF

...IPSD fibers supercontract exhibiting a ground state

Synthesis of bio-inspired fibers Microstructure: XRD

Synthesis of bio-inspired fibers Microstructure: AFM

IPSD fibers: an intermediate microstructure between silkworm and spider silk

Tunability of spider silk fibers

Synthesis of tunable bio-inspired fibers

Conclusions

Tunability allows adapting spider silk's properties to its intended use

IPSD silkworm silk regenerated fibers exhibit a ground state and recovery \rightarrow Tunability

The differences in the sequence between regenerated silkworm silk and natural spider silk fibers highlight the importance of processing

"Development of bioinspired scaffolds for tendon repairing"

biomat@mater.upm.es