

Wood as a Bio-Inspiring Material

Stefanie Tschegg*, Thomas Rosenau**, Antje Potthast** and Falk Liebner**

University of Natural Resources and Applied Life Sciences, BOKU, Vienna

*Institute of Physics and Materials Science ** Institute of Chemistry

COST Strategic Workshop "Principles and Development of Bio-Inspired Materials", BOKU Vienna, April 13-15, 2010

IPM

Wood – Complex hierarchical structure Layered and cellular composite

Layers: Annual rings, cell walls

Al-alloy – Epoxi layers – Aramid / Glass reinforcing fibres

Schematic of ARALL Laminate

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" 3 BOKU, April 13-15, 2010

Cellular composites

Wood – cells: Hollow tubes Low density AND High stiffness

Beech microstructure Differing cell sizes Wood rays perpendicular to longitudinal tracheids Fatigue fracture: $\varepsilon = 2.5 \times 10^{-3}$, N_f = 1.24x10⁷ Metallic foams – open and closed cells - low weight....

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" 4 BOKU, April 13-15, 2010

Orientation and angle of fibres

Fracture tolerance – high fracture resistance Non- LEFM

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" BOKU, April 13-15, 2010

6

Brittle fracture in TR (R-) orientation but final fibre bridging of crack ESEM in-situ fracturing Spruce Fichte TR F4-2 30 25 Bild 2 und 3 20 15 Kraft [N] 10 5 0 -6 200 µm 500 1000 1500 2000 Vorschub [µm] Det WD. Spot Magn 100 am Perlega et al 2007 GSE 12.1 5.7 Torr F4-2 29.11.07 300x 5.7 Torr F4.2 29 11:07

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" 7 BOKU, April 13-15, 2010

Further Improvement Compression Wood

IPM

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" BOKU, April 13-15, 2010 8

Change of Fracture Mode - Yew Compression Wood

High load: •Ray fracture - brittle

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" BOKU, April 13-15, 2010

Fibre Bridging in Yew Compression Wood

Keunecke et al. 2007

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" BOKU, April 13-15, 2010

10

Summary: Fracture Tolerance by Shapes and Dimensions of Structure Several Mechanisms of Crack Arrest

Elongated fibres

reinforcing braching, bridging Layers

Cells and holes

crack stoppers

Several mechanisms \rightarrow fracture tolerant

IPM

S. Tschegg, COST Strategic Workshop "Principles and Development of Bio-Inspired Materials" 11 BOKU, April 13-15, 2010