

Magnesium alloys for biodegradable implants

Laboratory for Metal Physics and Technology Department of Materials, ETH Zürich

Victor Wessels Anja Hänzi, Bruno Zberg, Jörg Löffler, Peter J. Uggowitzer

Coronary stent explanted after 1 month in mini pig

Metamorphosis of the Mg alloy to Ca-P-compound

Micro-CT and LM-Image after 28 days in mini pig.

Formation of conversion layer; Ca-P-compound

DMATL Department of Materials

Osteosynthesis

Biodegradable implants:

- No removal surgery
- Avoidance of long-term adverse reactions (chronic inflammation)
- Early load transfer
- Applications in pediatrics

Magnesium:

- Low corrosion resistance
- High biocompatibility
- Favorable mechanical properties
- Young's modulus similar to bone

From glassy ribbons to bulk metallic glasses

Cellphone casing

Glass: Splats, ribbons (µm) Bulk metallic glass (cm)

Pressure sensor

J. F. Löffler, A. A. Kündig, F. H. Dalla Torre, 'Amorphization, rapid solidification, bulk metallic glass processing and properties' (Ch. 17), in CRC Handbook of Materials Processing (Taylor & Francis).

J. F. Löffler,, Int. J. Met. Res .2006

Corrosion of amorphous vs. crystalline Mg

Example: Mg–Zn phase diagram

Above 2.4 at.% Zn: precipitation of intermetallic phases

Oxide layer

	Crystalline	Glass
Structure	Multigrain, precipitates	Homogeneous, single phase
Alloying elements	< 5 at.%	< 50 at.%
Corrosion	- Galvanic - Instable oxide layer	 Non galvanic d Stable oxide layer

Metallic glasses: No such 'phase-diagram limitations'

Song & Atrens, Adv. Eng. Mater. 5 (2003) 837.

-Corrosion properties in metallic glasses can be tailored

Alloy development

Goals

- Produce braided stents from Mg-based glassy wires
- Design Mg-based glasses with minimal degradation-induced H₂ formation for osteosynthesis/fracture fixation

DMATL Department of Materials

Wire production

In-house designed melt-extraction setup

B. Zberg, E. R. Arata, P. J. Uggowitzer, J. F. Löffler, *Acta Mater.* 2009

- Very high tensile strength (4x crystalline alloys) and good reliability
- 4-6% plastic deformation in tension
- Biocompatible MgZnCa wires are interesting for biomedical applications , e.g. self-expandable (braided) stents

parameter

Hydrogen evolution during degradation in simulated body fluid

In-vivo hydrogen evolution of Mg-based BMGs

Correllation of in-vitro and in-vivo hydrogen evolution results

Corrosion resistance

- H₂ evolution decreases by a factor of 100

Linear polarization resistance

- \rightarrow Improved corrosion resistance by Zn addition
- \rightarrow Changing corrosion mechanism due to different surface chemistry

머

A

B. Zberg, E. R. Arata, P. J. Uggowitzer, J. F. Löffler, Nature Materials 2009

DMATL Department of Materials

In-vivo animal studies

1 mm

Implantation of Mg in various tissues of domestic pigs

4 tissue types:

- Subcutis
- Muscle
- Liver
- Omentum

2 times:

- 27 days
- 91 days

Crystal. Mg reference alloy

- All samples show adequate tissue healing reactions, i.e. fibrous capsule foreign-body reaction and neovascularization

- Mg-glasses do not show any in-vivo hydrogen evolution

• Mg(95-x)ZnxCa5 metallic glasses were produced and their degradation properties studied in-vitro and in-vivo

•A detailed model of the degradation mechanism was developed based on electrochemical, structural, and spectroscopic analysis of samples for various Zn-content

•Alloys with Zn-content above 28 at.% displayed no clinically observable hydrogen evolution in-vivo

•Alloy wires were used to produce bradied stents, and BMG pins are currently being developed for ostesynthesis/fracture fixation

Mg-based metallic glasses could be the next generation of biodegradable implants!

Acknowlegdements

Financial support from

- The Swiss Innovation Promotion Agency (CTI-Project 7616.2 LSPP-LS)
- The "BioCompatible Materials and Applications" project (BCMA) initiated by the Austrian Institute of Technology (AIT)
- The Staub/Kaiser foundation (Switzerland) is gratefully acknowledged.