REVIEW MECHANICAL MODELING OF BIOLOGICAL/BIOINSPIRED MATERIALS

M. S. Wu School of Mechanical and Aerospace Engineering Nanyang Technological University Singapore

OUTSTANDING PROPERTIES AND FUNCTIONS

• Mutually inclusive properties, e.g., high toughness, high stiffnes

Espinosa et al. (2009), Prog. Mater. Sci. 54, 1059.

MODELING CHALLEN(

- Hierarchical architecture
- Complex microstructures
- Complex material properties: soft/hard composite, anisotropy, inhomogeneity, time-dependence

• Multi-physics

MODELING STRATEGIES

Model Categorization

MULTISCALE MODEL (SEQUENTIAL) TROPOCOLLAGEN MOLECULE

Scale bridging: L = 8.4 nm to L = 280 nm

Scale bridging: parameter passing via energy equivalence

MULTISCALE MODEL TROPOCOLLAGEN MOLECULE

Buehler, M.J. (2006), J. Mater. Res., 21, 1947.

MULTISCALE MODEL (SEQUENTIAL) CORTICAL BONE

finite element meshing of RVE

Scale bridging: passing of field variables via homogenization

Ghanbari, J., Naghdabadi, R. (2009), J. Biomech. 42, 1560.

MULTISCALE MODEL ISSUES AND CHALLENGES

- (1) Scale bridging across several spatial orders
- --- Treatment of hierarchy across scales ?
- --- Inadequate modeling of cross-scale interactions ?
- --- Loss of accuracy (propagation of errors), robustness, stability, convergence?
- --- Lack of a rigorous mathematical foundation ?
- --- Multi-physics problems?

MULTISCALE MODEL ISSUES AND CHALLENGES

(2) Concurrent multiscale model

- Solving all degrees of freedom in one step
- No assumptions of the type adopted in coarse-graining

J. Broughton, F. Abraham, N. Bernstein, and E. Kaxiras (1999), *Phys. Rev. B* 60, 2391.

• Handling of points-within-point in hierarchical structure?

Chen et al. (2008), J. Mech. Behav. Biomed. Mater. 1, 208.

MICROSTRUCTURAL MODELS

Spatial and orientational inhomogeneities
 Hierarchical architecture
 Material anisotropy
 Composite structure with inclusions/interfaces
 Time-dependence/material nonlinearity
 Large deformations

Fiber orientation deformation structure $\mathbf{M}) \phi_f \overline{W}_f (\overline{\mathbf{C}}, \mathbf{A}) dS$

Probability density of fiber orientation Energy density

Arrangement of structural elements in articular cartilage

S. Federico, W. Herzog (2008), J. Biomech. 41, 3309.

MICROSTRUCTURAL MODELS ISSUES AND CHALLENGES

- Integrated modeling of all "essential" structural elements in the complex microstructure
- > Selection of model parameters
- > Mathematical modeling of each family of structural elements
- > Interactions of the structural elements within and across scales
- > Integrated in a framework for solving problems of large domain (???)

PHENOMENOLOGICAL MODELING

• Motivated by:

- Large domains (three-dimensional)
- Complex microstructure
- Complex boundary conditions
- Complex domain shape and loading

Techniques for large scale problems require simple models – complex microstructural models will overwhelm the solution process

PHENOMENOLOGICAL MODELING SOFT TISSUES

- $W = \sum_{i+j=1}^{N} C_{ij} (J_1 3)^i (J_2 3)^j$
- $W = c(l_1 3)^n$

 $W = \frac{\mathcal{C}}{2}(e^Q - 1)$

Brain tissue: K. Miller, K. Chinzei (1982), *J. Biomech.* 30, 1115.

Elastinous tissue: Watton et al. (2009), J. Biomech. 42, 1320.

Gastroesophageal junction: Yassi et al. (2009), *J. Biomech.* 42, 1604.

 $Q = 2c_1(E_{11} + E_{22} + E_{33}) + c_2E_{11}^2 + c_3(E_{22}^2 + E_{33}^2 + E_{23}^2) + 2c_4(E_{12}^2 + E_{13}^2)$

Major advantage: Reduction in the number of parameters

Issue:

Determination of parameters via comparison of model predictions to whole field measurements made by various imaging techniques

What is the link between microstructural and phenomenological parameters?

PHENOMENOLOGICAL MODELING GELS

Microstructural modeling:

Hong et al. (2008), J. Mech Phys. Solids 56, 1779. $W = \frac{NkT}{2} (I_1^2 - 2I_2 - 3 - 2\log I_3) + \frac{kT}{v} \left(vC \log \frac{vC}{1 + vC} - \frac{\chi}{1 + vC} \right)$

Phenomenological modeling: second-order nonlinear elasticity model

M.S. Wu and H.O.K. Kirchner (2010), J. Mech. Phys. Solids 58, 300.

$$W = \alpha J_1 + \frac{\lambda + 2\mu}{2} J_1^2 - 2\mu J_2 + \frac{l + 2m}{3} J_1^3 - 2m J_1 J_2 + n J_3$$

PHENOMENOLOGICAL MODELING GELS

CHALLENGES MODELING OF CROSS-PROPERTY CORRELATIONS

• Different physical properties such as elastic stiffness and electrical conductivity may be correlated via their dependence on microstructure (Sevostianov and Kachanov, Adv. Appl. Mech. 42, 69)

CHALLENGES: INVERSE MODELING STRUCTURE-PROPERTY-FUNCTION

A PROPERTY-FUNCTION INVERSE MODEL ELASTICITY IMAGING

Tissue deformation + Image acquisition Displacement field computation via image
processing

Inverse problem solved to determine spatial distribution of material properties

A PROPERTY-FUNCTION INVERSE MODEL ELASTICITY IMAGING

$$W = \frac{\lambda}{4}(I_2 - 1) - (\frac{\lambda}{4} + \frac{\mu}{2})\ln I_2 + \frac{\mu}{2}(I_1 - 2)$$

Gokhale et al. (2008), *Inverse Problems* 24, 045010.

CONCLUSIONS

- Strategies for modeling biological and bionspired materials can be broadly classified in various ways; particularly:
- Multiscale/single scale models
- > Phenomenological/microstructural models

• Challenges include:

- Further development of multiscale models, tackling issues such as scale bridging, concurrent hybrid techniques, solution accuracy and stability
- Modeling of microstructure: hierarchical architecture, inclusions, inhomogeneity and anisotropy, material and geometrical nonlinearity, etc.

- Development of forward and inverse models to design new bio-inspired materials with targeted properties and functions
- Modeling of cross-property correlations