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Abstract: Forest management not only changes the vegetative composition of the forest stand but also the 
composition and dynamics of the understory herb, forb and shrub layers. These changes will effect the use of 
these stands by roe deer by altering their habitat. One method of determining the effects of forest management is 
to predict and evaluate future wildlife habitat suitability indices under different management strategies. The 
objective of this project was to develop empirical understory vegetation models to predict the change of 
understory vegetation over time. Using the Austrian National Forest Inventory, a hierarchical two model 
approach was used. First, logistic regression was used to predict the probability of the understory vegetation 
being present or absent in the future. Then, if the understory vegetation type was predicted to be present in the 
future, it was quantified using logarithmic regression. This modeHing strategy is unique because it models the 
change in understory vegetation. Also, the strategy uses variables from both the current forest and the future 
forest (predicted by a growth model). In application, the models developed in this study can be used to evaluate 
the effects of different management strategies on understory vegetation and roe deer habitat. 
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Kurzfassung: Forstwirtschaftliche Maßnahmen ändern nicht nur die Dichte und Zusammensetzung der 
Baumschicht, sondern auch die Strauch-, Kraut- und Grasschicht Diese wiederum ändern die Habitatqualität für 
Rehwild. Eine Möglichkeit, die Effekte forstwirtschaftlicher Maßnahmen abzuschätzen besteht darin, künftige 
Habitatqualitätsindices unter verschiedenen Management-Seenarien modellhaft zu prognostizieren. In der 
vorliegenden Arbeit werden dynamische, empirische Vegetationsmodelle der Entwicklung der Unterschicht der 
Waldbestände entwickelt. Mit den Daten der Österreichischen Waldinventur wird ein hierarchischer 
Modellansatz verwendet. Zunächst wir mittels logistischer Regressionsmodelle die W ahrscheinlicbkeit für das 
künftige Vorahndensein gegebener Vegetationstypen prognostiziert. Im Anschluss daran, wird dann die 
Mächtigkeit des Vegetationstype mittels log-linearer Regressionsmodelle abgeschätzt. Die besondere Neuheit 
dieses Modellansatzes besteht in der dynamischen Beschreibung der Veränderung der Vegetation in der 
Unterschicht der Bestände. Die Eingangsvariablen sind der gegenwärtige und der künftige Zustand der 
Oberschicht (prognostiziert mittels eines Waldwachstumsmodells). In der Anwendung kann mit den hier 
entwickelten Modellen der Effekt verschiedener Bestandesbehandlungsmaßnahmen (Durchforstung, Ernte) auf 
die Bestandesunterschicht und auf die Habitatqualität fiir Rehwild abgeschätzt werden. 

Stichwörter: Rehwild, Habitatqualität, Vegetationsmodelle, logistische Regression, Österreich 
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1 INTRODUCTION 

There have been tremendous efforts dedicated to understanding the causes and eures of forest 

dieback In Austria, the restoration of monocultured pure Norway spruce stands to their naturally 

occurring fir-beech mixtures is one of the proposed methods of minimising the effects of forest 

dieback. These mixed stands are expected to be more resilient to acidic deposition, pollution and 

climate change while increasing biodiversity. This project is funded by the Special Research 

Program (SRP) for "Forest Ecosystem Restoration" which is dedicated to researching the many 

different aspects of forest ecosystem restoration. The proceedings from the "International 

Conference on Forest Ecosystem Restoration" (2000) is an excellent reference covering many of 

the diversified subjects conceming forest restoration. 

The direct effect of restoration will be seen in the structure of the forest stand. This change will 

come in the species composition of the regeneration which will be forced upon the site through 

human intervention (restoration). However their will also be indirect changes within the entire 

ecosystem. One expected change will occur in the understory herb, forb and shrub layers. There 

have been many studies which have, for different stand types and conditions, described the 

understory vegetation changes under different silvicultural systems such as thinning, fertilisation 

and harvesting (MacLean & Wein 1 977; Tappeiner II & Alaback 1 989; Reader & Bricker B.D. 

1992; Graae & Heskjaer 1 997; Elliot et al. 1 997; Bailey & Tappeiner 1 998; Fredericksen et al. 

1999; Thomas et al. 1999). These silvicultural systems can increase the light reaching the forest 

floor resulting in an increase in the understory vegetation which can translate into an increase in 

the availability ofungulate browse (Gill et al. 1 996). The understory vegetation for ungulates is a 

source of food and cover (thermal and hiding) (de Jong et al. 1 995; Reimoser & Gossow 1996) 

and any change to these can have a marked effect on the predisposition for use by wildlife. The 

effects of a particular silvicultural treatment can be viewed both positively and negatively 

depending on the perspective. Hunters would view clear cuts positively since the harvest of 

overstory trees would increase the attractiveness of an area to game while increasing visibility. 

However forest managers, in areas where sufficient regeneration is lacking and the growth rates 

are slow, would view any increase in attractiveness as a problern (Motta 1996). The negative 

effects of ungulates on forests is not limited to the browsing regeneration but also includes the 

fraying of stems and bark peeling (Ammer 1 996; Reimoser & Gossow 1 996; Motta 1996). 
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However, Putman ( 1996) suggested that browsing could also be used positively to aid in 

increasing forest diversity. 

In order to manage any resource sustainability, it is necessary to understand the implications of 

choosing one management strategy over another. The choice to "restore" forests to their natural 

mixtures, will have far reaching impacts, one being the effect on ungulates, like roe deer 

(Capreolus capreolus). For ungulates, one aspect of management is to understand its habitat 

needs. In 1 994, Reimoser and Zandl developed Habitat Suitability Indices (HSI) for roe deer in 

Austria. These indices, for a given moment in time, measure a forest stands predisposition for 

use by roe deer. One of the key requirements of HSI for an ungulate like roe deer, is the 

knowledge of the structure of the vegetation (including herb, forb and shrub layers) over time, 

both at a stand level and on a Iandscape scale. The difficulty is, how to assess the habitat quality 

spatially and temporally (Radeloff et al. 1 999; Li et al. 2000). The spatial aspects of habitat 

evaluation have been greatly aided with the development of Geographie Information Systems 

(GIS) (Garcia & Armbruster 1997; Radeloff et al. 1999; Debeljak et al. 2001). However the 

temporal aspect is much more difficult. For forests with trees above a minimum breast height 

diameter, there are numerous individual tree growth models available which can provide 

information regarding the growth ofthe trees over time. This provides the wildlife ecologist with 

a description of the future forest stand, its vertical structure and composition. However, the 

temporal changes of the understory vegetation, which is essential in predicting future HSI 

indices, do not exist. In fact, the modeHing of the abundance and distribution of understory 

vegetation has been, comparably, insignificant (Mckenzie & Halpern 1 999). 

The objective of this study is to address the need for understory vegetation models. These 

models will predict the change in vegetation over time, more specifically those vegetative 

parameters, referred to here as HSI parameters, that are needed to calculate the future Habitat 

Suitability Indices for roe deer developed by Reimoser & Zandl ( 1994). This will be done with 

the understanding that a forest growth model can predict, at least a portion of these HSI 

parameters. Also, the growth model predictions can be used as inputs for the understory 

vegetation models. 
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The method chosen to achieve this objective was to build a series of empirical models to predict 

each of the HSI parameters needed to estimate the future HSI for roe deer. A simple two model 

approach was used, logistic to predict the probability of a HSI parameter being present or absent 

in the future, then quantifying it using logarithmic regression. The modeHing strategy used has 

incorporated more information, from both time 1 and time 2 which makes it unique compared to 

other approaches. This was done to better represent the dynamics of the forest stand and the 

understory vegetation in predicting future vegetation change. 

1.1 Background 

In 1 985 and 2000, Moeur presented the model "Cover" as an extension to the growth model 

Prognosis (Stage 1973). There are two major components to "Cover", an option referred to as 

"Canopy", which controls the prediction of values related to tree crowns, and "Shrubs", which 

controls the predictions of understory characteristics. The focus of this discussion will be on the 

"Shrubs" option. The development of "Shrubs" was to assist in, examining the effects of 

silviculture on forest stand characteristics important to wildlife, and to examine the dynamics of 

the shrub community affecting stand succession and competition with regeneration. 

The "Shrubs" option first predicts the percent total shrub cover by predicting whether or not 

shrubs will be present or not on the site. This is done using logistic regression. If the shrubs are 

present, it is quantified using logarithmic regression. Then, the probability of 3 1  specific species 

being present or absent on the site is determined using logistic regression. Ifthey are present, the 

species height and percent cover are determined using logarithmic regression. The model inputs 

are the same for all models except that in the species models the percent total shrub cover 

calculated in the first step becomes an input variable. The input variables are slope, aspect, 

elevation, habitat type, overstory basal area, time since disturbance, type of disturbance, 

geographic location and topographic position. 

The "Shrubs" module of "Cover" is an important work since it is the only modeHing framework 

found where individual understory species are directly predicted in conjunction with a growth 

model. The significance is that an attempt to make the predictions dependant on dynamic 

variables, like the overstory basal area, time since disturbance and type of disturbance is made. 
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Another important facet of "Shrubs" is that the individual species are modelled separately which 

makes them tremendously flexible in terms of application. However the most important point 

deals with the two model modeHing strategy. Logistic regression is used to predict the 

probability of occurrence, then the percent cover is quantified using logarithmic regression. This 

is the methodology that will be used. 

The "Shrubs" module of "Cover" however, was based on empirical models that were built from 

data representing only one moment in time. The only information regarding the dynamics of the 

forest came from two variables, time since disturbance and type of disturbance. This suggests 

that no information from time 1 ,  the starting forest condition, was available to the empirical 

models. 

Unfortunately, the shrubs option was never used in application. Maffei et al. ( 1 997), used the 

model extension "Cover" of the 1Forest Vegetation Simulator (FVS) to identify northem spotted 

owl habitat in central Oregon. In this study, owl habitat was classified as either nesting, roosting 

and foraging habitat, or dispersal habitat. Although both habitat types were of interest, this study 

focused on dispersal habitat in which the "Shrubs" module of"Cover" was not needed. 

The approach that Moeur proposed is the only one that was found that predicted individual 

understory species directly. There are numerous other examples in the literature, (Davis & 

DeLain 2000), (Smith 2000), (Benson & Laudenslayer 2000), (Eng 1 997), (Brand et al. 2000), 

where growth models are used to model wildlife habitat, but never by predicting understory 

vegetation directly. With respect to modeHing roe deer, a recent publication by Radeloff et al. 

( 1999) modelled roe deer populations using an interactive geographic information system. 

Because the study was intended to demonstrate the use of GIS as a tool to spatially model deer 

populations, the underlying HSI model was very simplistic. A habitat value was the sum of 

values given by the following parameters; geology, tree composition, the percentage of 

forestlplowed field boundaries in relation to forest edges and the percentage of grasslands 

enclosed by forest. Each habitat type was evaluated and a habitat value was classified into poor, 

medium and good, and assigned a value representing the maximum deer population density for 

the habitat type. Again, the understory vegetation was not modelled directly. 

The Forest Vegetation Simulator (FVS) is an accepted naming convention to encompass all the variants of the Prognosis model 
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Ignoring the dynamic aspect ofunderstory vegetation for a moment, there are tremendous efforts 

going into the estimation of current habitat. These models that deal with estimating vegetation 

habitat are referred to as species response models or environmental gradient models. They 

predict the probability of the presence or absence of vegetation, as a function of environmental 

variables (i.e. slope angle, elevation, aspect) and can incorporate current forest cover information 

(Ertsen et al. 1998; Mckenzie & Halpem 1 999). This is similar to the approach that Moeur took, 

but for different reasons. The primary aim of most species response model studies is to acquire 

more insight into the spatial distribution of species along environmental gradients (Ertsen et al. 

1998). Also, species response modellers are not interested in quantification, their primary 

interests are the development of maps showing species distribution. There are numerous uses for 

species response models, for example, they are being used to estimate the habitat range of a 

given species, predict areas where a given species is most likely to occur or to monitor habitats 

of rare species. The approach of modelling vegetation habitat can also be applied to modeHing 

wildlife habitat. In 1 997, Uygar and Mitsch modelled the spatial habitat for red-winged 

blackbirds using the same methodology as the species response modellers are using. 

The dominant approach in species response modelling is to use a generalised linear model 

(GLM) with a logistic link function even though there is much discussion conceming its 

appropriateness (Austin et al. 1984; Huisman et al. 1 993; Austin & Gaywood 1994; Oksanen 

1997; Bio et al. 1 998; Mckenzie & Halpem 1 999; Pearce & Ferrier 2000a; Pearce & Ferrier 

2000b). Other approaches such as general additive models (GAMs) (Yee & Mitchell 1991) and 

Canonical Correspondence Analysis (CCA) (Guisan et al. 1 999) have been discussed. The GLM 

approach is not new and has been widely applied in forest and ecological research: in modeHing 

tree mortality (Hamilton 1974; Monserud & Sterba 1999), regeneration recruitment (Schweiger 

& Sterba 1 997) and ingrowth (Ledermann et al. In preparation) and wildlife habitat (Uygar & 

Mitsch 1 997). 

From the literature, it is evident that much has been done in predicting future wildlife habitat, 

however only one attempts to model understory vegetation directly. Moeur's approach is the best 

attempt at modeHing the dynamics ofindividual species. The prediction of the probability of the 

presence or absence of the vegetation species is similar to the efforts of the species response 

modellers. However, so far, the dynamics of the forest stand in species response modelling is not 



6 

needed and therefore is ignored. In Moeur's work, the forest stand dynamics is only addressed 

when a human intervention occurs using time since disturbance and type of disturbance to reflect 

the changes. Normal growth is only addressed using a predicted basal area. Moeur also limits her 

predictions to stands less than 40 years old. Most importantly, Moeur does not use any 

information about the shrub species status (presence/absence, %cover, height) from time 1 to 

predict the future status. It is expected that knowing the status of a species at time 1 will have 

tremendous impact on its status in the future. Therefore there is also a potential to exploit 

information about the changes in the forest stand, using information from both time 1 and time 2. 
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2 MATERIALS 

2.1 Austrian National Forest Inventory Data 

The Austrian National Forest Inventory (ANFI) (Forstliche Bundesversuchsanstalt 1 98 1 , 1 986 

and 1 992) was chosen as the modeHing dataset. The ANFI meets the requirement that the data 

must be remeasured on one or more occasions. The ANFI is a continuous forest inventory made 

up of permanent sample plots (PSPs) that have been remeasured 3 times, 1 98 1 ,  1 986 and 1 992. 

The inventory is a systematic grid oftracts spaced at 3.89 km x 3.89 km, covering all of Austria. 

At each intersection point, a 200m by 200m square transect is established. At each comer of the 

transect, 3 types of sample plots are established: 1 )  a 9.77m (300m2) radius circular plot to 

collect plot descriptors; 2) a Bitterlich ( 1 948) angle count plot (BAF 4), to select trees above 

1 0.4 cm and 3) a 2.6m (2 1m2) radius plot to select trees between 5 cm and 1 0.4 cm. The plots on 

each comer can be further broken down into up to 4 subplots based on defined administrative, 

site and stand specific differences within the plot. For this study the subplot is the basis for the 

modelling process. Figure 2-1 shows the distribution of the subplots used in this study. It should 

be noted that the subplots are not equal in number and distribution within each of the growth 

regions. The main problern with ANFI for the current study is that the exact HSI parameters that 

are needed, do not exist in the inventory, however it was felt that they could be estimated using 

similar plot descriptors or combinations of several plot descriptors found in the ANFI dataset. 

2.2 Response Variables Defined 

Of the nine HSI according to Reimoser and Zandl ( 1 994), protection from climate (Klimaschutz 

Index); protection from euernies (Feindschutz Index), food availability (Nahrungsangebot Index) 

and habitat (Wohnraum Index), are totally or at least partially based on information from the 

forest stand and understory vegetation. Table 2-1  presents the 4 HSI and the 1 4  HSI parameters 

used to calculate the HSI as well as their description in English and German. The shaded area in 

the table shows the HSI parameters that can be modelled by a growth model. 
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Figure 2-1: Distribution of ANFI subplots used for model development. 
Abbildung 2-1: Verteilung der Probeflächen der Österreichischen Waldinventur, die fiir die Erstellung der Modelle 
verwendet wurden. 

2.2.1  Creating the HSI Parameters from the ANFI Plot Descriptors 

The HSI parameters needed were not directly found in the ANFI data. It was therefore necessary 

to construct the HSI parameters from one or more of the plot descriptors found in the ANFI. 

These plot descriptors would be individually predicted, then in the final stages combined to 

represent the needed HSI parameters. The plot descriptors from the ANFI that were of most 

interest were growth class (Wuchsklasse) and wildlife browse type (Äsungstyp). 
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Table 2-1: The Habitat Suitability Indices, their associated HSI parameters that must be modelled, and their 
description in both English and German. Shaded areas represent those HSI parameters that can be modelled by a 
growth model. 
Tabelle 2-1: Die Habitatqualitätsindizes (HSI), die Parameter, die zur ihrer Berechnung modelliert werden müssen 
und ihre Beschreibung. Grau unterlegt sind alle Parameter, die mit Waldwachstumsmodellen berechnet werden 
können. 

HSI 
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The growth classes represent 8 successional stages o f  forest cover. Of the 8 growth classes, 6 are 

of interest in this study (Table A - 2). Each class is assessed in tenths of total area coverage, 

with the sum totalling 1 0  or 1 00%. Any subplot can be assigned up to 5 growth classes. The 

wildlife browse classes are important indicators ofbrowse availability for ungulates. The wildlife 

browse classes break the vegetation occurring between the forest floor and 1 .5 meters, into 1 0  

classes (Table A - 3). Each class i s  assessed in tenths o f  total potential browse with the sum 

totalling 1 0  or 1 00%. It should be noted that areas with "No BROWSE" are represented as a class. 

Up to 5 browse classes can be assigned to a given subplot. 

In Table 2-2, the ANFI plot descriptors that would be used to represent each of the HSI 

parameters during the modeHing process are shown. Because a two step modeHing approach is 

being used, the response variables take on two forms. For the logistic regression, the response 

variables are dichotomous ( 1  or 0), representing the presence or absence ofthe plot descriptor in 

the future (i.e. time 2). For quantification modelling, the response variable is formulated as the 

percent share of the plot descriptor in the future. There are 14  unique plot descriptors, from the 

two plot descriptor classes, that are needed to predict the HSI parameters Table A - 1 .  Of these 

1 4, 1 2  require both a logistic model and a logarithmic model. Two additional logarithmic 

models are required to quantify the amount of larch and broadleaved trees present in the REGEN 

II growth class. Logistic models were not needed for these two cases because the 

presence/absence of REGEN II is made by another model. It should be noted that the growth 

classes and wildlife browse classes (ANFI) are not measured in the same manner as the HSI 

parameters. However for this study, it was assumed that they were measured in the same manner. 
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Table 2-2: The HSI parameters requiring prediction and the ANFI plot descriptors used to model them. 
Tabelle 2-2: Die HSI-Parameter, die modelliert werden müssen und die Parameter der Österreichischen 
Waldinventur, die diese am besten beschreiben. 

Vegetative Parameters Requirin2 Prediction Plot Descriptors 
HSI HSI Parameter Growtll Class Wildlife Browse Class 

Parameter Description 
BESG Total crown projection area of all plants Regen II and !arger for all 

above 1.3 meters in height (percent) species 
GSLH Total crown projection area of all Regen II and !arger for all 

broadleaved species above 1.3 meters in broadleaved species 
height (percent) 

GSLÄ Total crown projection area of larch Regen II and !arger for 
above 1.3 meters in height (percent) stands with larch 

WÖBT Wildlife Ecological Stand Type (percent) 
050: Regeneration - for Browse 

Regen I 060: Regeneration- for Browse and Cover 
070: Regeneration - for Cover 

Regen II 080: Thickets 
090 Pole Pole 
100: Mature Mature I and II 
110: Advanced Regen under Mature Stand Regen II and Mature I and 

with more than 30% coverage II 
120 Uneven-aged stand Regen I and !arger for all 

species 

BEGG Total percent green vegetation to 1.3m Sum of all classes except 
no browse class 

BEGV Total percent woody vegetation to 1.3m Broadleaved, conifer, 
shrubs, raspberry, 
blueberry 

BEVJ Total percent regeneration to l.3m Regen I 
HEB Abundance Blueberry > 30cm (percent) Not Available" 
HEI Abundance Blueberry (percent) Blueberry 
GRAE Abundance of Grass (percent) Grass 
VERH Abundance of all woody species to 1.3m Broadleaved, conifer, 

(percent) shrubs, raspberry, 
blueberry 

VERH3 Abundance of all woody species > 30cm Not Available" 
to 1.3m (percent) 

ATTl Abundance of favourite roe deer herbs Not Available" 
and grass (percent) 

ATT2 Abundance of moderately favourite roe Not Available2 
deer food (percent) 

2 It was not possible to model these HSI parameters because of a Iack of appropriate data. The calculation of the HSI 
values will be adjusted to accomrnodate these missing HSI parameters. 
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2.2.2 Growth Classes 

REGEN I 

The REGEN I growth class refers to regeneration with an average height less than 1 .3 meters. Free 

standing REGEN I must occupy an area more than 500m2• All valid tree species can be considered 

REGEN I. 

REGENil 

The REGEN II growth class refers to regeneration with an average height greater than 1 .3 meters 

and having a diameter at breast height (DBH) of less than 1 0.4cm. REGEN II can either be free 

standing or overtopped by another growth class. In both cases REGEN II must occupy an area 

greater than 500m2• All valid tree species can be considered REGEN II. Note: by the design ofthe 

inventory, both REGEN I and REGEN II cannot be present in the same plot. If both exist and the 

500m2 requirement is met, the plot is subdivided into subplots. If this is not possible due to being 

intermixed, one is chosen over the other. 

REGEN II - BROADLEA VED 

The REGEN II broadleaved response variable represents the quantity of broadleaved species 

present in the REGEN II. For this response variable only a logarithmic model is required. 

REGEN Il - LARCH 

The REGEN II Larch response variable represents the quantity of larch species present in the 

REGEN II. For this response variable only a logarithmic model is required. 

2.2.3 Wildlife Browse Classes 

No BRowsE 

No BROWSE refers to total area that has no browsable species or is not browsable. Areas solely 

made up of moss, birch, alder and some specific herbs and fems are considered not browsable. 

Areas with regeneration under a dense pole stand also could be considered unbrowsable. Figure 

A - 1 illustrates the distribution of the No BROWSE class compared to the distribution of all the 
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subplots used in  the modeHing process. The distribution of  the subplots with No BROWSE is 

evenly distributed within the dataset representing all ofthe subplots. 

CONIFER BROWSE 

CONIFER BROWSE refers to the total browsable area that has browsable conifer species such as fir 

(Abies spp.), pine (Pinus spp.), spruce (Picea abies (L.) KARST) and yew (Taxus baccata L.) . 

CONIFER BROWSE does not include dense regeneration that limits access to ungulates. For 

ungulates such as roe and red deer and chamois, fir (Abies alba MILL.) is the preferred conifer 

species for browse, followed by stone pine (Pinus cembra L.), spruce, red pine (Pinus sylvestris 

L.), black pine (Pinus nigra ARNOLD) and finally is larch (Larix decidua MILL.). With respect to 

peeling, spruce and fir are preferred followed by stone pine and then the others which are equally 

desirable (Reimoser and Reimoser 1 998). Figure A - 2 illustrates the distribution of the CONIFER 

BROWSE class compared to the distribution of all the subplots used in the modelling process. 

The distribution of the subplots with CONIFER BROWSE is evenly distributed within the dataset 

representing all of the subplots. Interestingly, there are many subplots with CONIFER BROWSE in 

the primarily deciduous growth zones 9 and 1 0. 

DECIDUOUS BROWSE 

DEcmuous BROWSE refers to the total browsable area that has browsable deciduous species such 

as ash (Fraxinus spp.), maple (Acer spp.), beech (Fagus sylvatica L.), hombeam (Carpinus 

betulus L.), linden (Tilia spp.), elm (Ulmus spp.), mountain ash (Sorbus spp. and Prunus spp.), 

poplar (Populus spp. except black poplar (Populus nigra L.)), and chestnut (Castanea satiava 

MILL.). For ungulates such as roe and red deer and chamois, the most desirable browse species 

are aspen (Populus tremula L.), the maples, the Sorbus spp. , ash, oak, and salix. The next most 

desirable browse species are the elms, birches, the alders, linden, beech and hombeam. With 

respect to peeling, the maples, aspen, elms, ash, hombeam, beech, salix, mountain ash and wild 

cherry are desirable. Oak, linden and some Sorbus spp. are moderately desirable (Reimoser and 

Reimoser 1 998). Figure A - 3 illustrates the distribution of the DEcmuous BROWSE class 

compared to the distribution of all the subplots used in the modeHing process. As expected there 

are fewer DEcmuous BROWSE subplots and their distribution is focused in growth zones 6, 9, 1 0  

and 20, the primarily deciduous regions. 
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SHRUB BROWSE 

SHR.UB BROWSE refers to the total browsable area that has browsable shrub species such as elder 

(Sambucus spp.), comelian cherry (Cornus mas L.), haselnut (Corylus avellana L.) and, rose 

(Rosa spp.). These species, according to Ellenberg (1 996), are halfto full light plants, preferring 

moist to dry sites, never on strongly acid sites, preferring mostly calcareous soils that are 

moderately to rieb in nutrients. Most shrub species are preferred in the diet selection of roe deer 

(de Jong et al. 1 995). Figure A - 4 illustrates the distribution of the SHRUB BROWSE class 

compared to the distribution of all the subplots used in the modeHing process. There are not 

many SHRUB BROWSE subplots and interestingly their distribution is not in dominant deciduous 

or coniferous areas such as growth zones 9, 1 0 and 1 1 , 12 and 13 .  

RASPBERRY BROWSE 

RASPBERRY BROWSE refers to the total area coverage of raspberry (Rubus idaeus L), bromberry 

(Rubus spp.) and clematis (Clematis spp.). According to Ellenberg (1 996) raspberry (Rubus 

idaeus L) is a full light plant, accepting shade up to 30% and prefers nutrient rieb soils in lower 

elevations. Generalising with respect to other Rubus spp., they also have similar preferences. 

Rubus sp. are very attractive to roe deer. Figure A - 5 illustrates the distribution of the 

RASPBERRY BROWSE class compared to the distribution of all the subplots used in the modeHing 

process. The RASPBERRY BROWSE subplots are distributed evenly throughout Austria. 

BLUEBERRY BROWSE 

BLUEBERRY BROWSE refers to the total area coverage of blueberry ( Vaccinium myrtillus L.) and 

lowbush cranberry (Vaccinum vitis-idaea L.) According to Ellenberg ( 1996) blueberry is a 50% 

shade species preferring wetter, less nutrient rieb soils that are more acidic. One characteristic of 

blueberry sites is the moderately thick layers of humus. Blueberry is very attractive to roe deer. 

Figure A - 6 illustrates the distribution of the BLUEBERRY BROWSE class compared to the 

distribution of all the subplots used in the modeHing process. The BLUEBERRY BROWSE subplots, 

as expected, are distributed mostly in the dominantly conifer areas. 

ERICA BROWSE 

ERICA BROWSE refers to the total area coverage of grey heath (Erica spp.) and heather (Ca/luna 

spp.). According to Ellenberg (1 996) Erica spp. are all half light plants preferring warmer 



1 5  

temperatures. They also prefer acidic soils that are poor in nutrients. Erica spp. are not attractive 

to roe deer. Figure A - 7 illustrates the distribution of the ERICA BROWSE class compared to the 

distribution of all the subplots used in the modeHing process. There are not many ERICA BROWSE 

subplots and as expected, they are focused in small pockets where the site conditions are 

suitable. 

HERB BROWSE 

HERB BROWSE refers to the total area coverage of herbaceaus species. According to Ellenberg 

(1 996) the key herbs species have a wide range of site preferences. Most herbs are at least 

moderately attractive to roe deer. Figure A - 8 illustrates the distribution of the HERB BROWSE 

class compared to the distribution of all the subplots used in the modeHing process. 

Interestingly, although there are many HERB BROWSE subplots found throughout Austria, HERB 

BROWSE is concentrated in the predominantly deciduous growth zones 9 and 10.  

FERN BROWSE 

FERN BROWSE refers to the total area coverage of fern species. The fern species prefer different 

sites, for example, Athyrium filix-femina L. is a shade plant, preferring less than 5% full sunlight. 

It prefers sites that are wet and high in nutrients with the pH-level being unimportant. Dryopteris 

carthusiana VILL. is a half shade plant, meaning it requires more than 10% full light. It has no 

preference for soil moisture, but prefers soils that are more acidic and poor in nutrients. 

Gymnocarpium dryopteris L. is a half light plant meaning it prefers less than 30% shade. It 

prefers wet sites that are basic and poor in nutrients. Certain ferns are attractive to roe deer. 

Brachen fern (Pteridium aquilinium L.) is not considered browse and is classified as NO BROWSE. 

Figure A - 9 illustrates the distribution of the FERN BROWSE class compared to the distribution of 

all the subplots used in the modelling process. The FERN BROWSE subplots are found in pockets 

throughout Austria. 

GRASS BROWSE 

GRASS BROWSE refers to the total area coverage of the many forest grasses. For roe deer forest 

grasses are only palatable for short periods during the growing season. Figure A - 10 illustrates 

the distribution of the Grass BROWSE class compared to the distribution of all the subplots used 

in the modelling process. The Grass BROWSE subplots are found evenly throughout Austria. 
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2.3 Explanatory Variables Defined 

Available explanatory variables that could potentially influence: a) the likelihood of the response 

variable being present or absent in the future; or b) the quantity of the response variable that will 

be present in the future, were to be tested. The ANFI dataset is very comprehensive, offering a 

wide range of explanatory variables, some of which have measurements from both time 1 and 

time 2. Because of the complexity of the data, the naming conventions for variables became 

critical. The following description of the explanatory variables includes the variable name that 

was used in the modeHing process. In the tables this will be clear, however for descriptions of the 

variable without a table, the variable name will appear in brackets imrnediately after the name. 

This should aid in understanding the variable and their estimated coefficients in the results 

section. 

There were 3 types of explanatory variables tested, continuous, discrete and qualitative. For 

each subplot the explanatory variables modelled as continuous were: elevation (ELEV), measured 

to the nearest 1 00m; slope (SLPE), measured to the nearest 10%; growth class (Table A - 2), 

measured to the nearest 1 0% area coverage; wildlife browse class (Table A - 3) measured to the 

nearest 1 0% potential browse between the forest floor and 1 .5 m; soil moisture (WTRG) was 

ordinally scaled from 1 to 5. For each of the subplots the following forest stand descriptors were 

calculated and modelled as continuous; basal area (m2/ha) time l(BA_TI), time 2 (BA_T2) and 

change in basal area (c_BA = BA_T2- BA _TI); quadratic mean diameter (cm) time 1 (QMD_TI), time 

2 (QMD_T2) and change in quadratic mean diameter (c_QMD = QMD_T2 - QMD_TI); crown 

competition factor (Krajicek et al. 1 961)  time 1 (CCF_TI), time 2 (cCF_T2) and change in crown 

competition factor (c_ccF = CCF_T2- CCF_TI) were calculated using open grown crown widths 

given by Hasenauer ( 1997); stand density index (Reineke 1 933) time 1 (sDI_Tl), time 2 (SDI_T2) 

and change in stand density index (c_sDI = SDI_T2- SDI_TI). Interval value (INTVAL) represents the 

time between remeasurements, either 5 or 6. This was included to determine if the different 

remeasurement intervals had a significant effect. 

The following qualitative variables were modelled as dichotomaus (0 - 1 )  durnmy variables 

where 1 indicates the presence and 0 indicates the absence ofthe variable; stand type class time 1 

and time 2 (Table A - 4), aspect ( Table A - 5), relief (Table A - 6), stand structure at time 2 
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(Table A - 8), soil types (Table A - 9), ground vegetation type (Table A - 7) and growth zone 

(Table A - 1 0) and (Figure A - 1 1 ) . 

3 METHODS AND MODEL DEVELOPMENT 

.3.1 Overall Modelling Methodology 

3 . 1 . 1  Preparation of the Modelling Dataset 

The dataset used to model the probability of change in the response variable and to quantify the 

magnitude of that change, needed to be paired, such that they represent two points in time. 

Subplots from 1981  were paired with matehing 1986 subplots, 5 year re-measurement interval 

and subplots from 1986 were paired with those in 1992, 6 year re-measurement interval (Figure 

3- 1 ). The two datasets were then appended to one another to obtain the modelling dataset. 

Because there have been notable changes in the data collected, the nomenclature and the 

measurement scale of parameters between the 3 re-measurements, it was necessary, in some 

cases, to re-code the data to ensure consistency between re-measurements. 

Because the number of subplots between re-measurements can change, only plots where the 

number of subplots within a plot did not change between remeasurements were used in the 

analysis. The use of the subplot for the analysis also complicated the calculation of stand 

parameters since it was necessary to split the angle count into subplots and calculate the per 

hectare value of stand parameters based on the subplot area rather than the entire plot area. This 

task was carried out by the Forstliche Bundesversuchsanstalt 

Although all of Austria is covered by this inventory, only subplots defined as: managed forested 

area, a brush area in a forested area or a protection forest with yield were used for the modeHing 

process. These forest management types were selected because they represent areas where 

traditional forest management is practised. In the protection forest, a no management objective is 

considered a management type. Subplots with no tree data, such that no trees were in the angle 
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count, were kept, ifthe forest management type was present and the subplot was assigned a valid 

development stage. Any subplots with missing subplot site descriptors were deleted. 

Austrian National Forest lnventory 
1981 1986 1992 

� 
Data Pair I Data Pair 2 

l Data Pair I J 
Data Pair 2 

� 
Modelling Dataset 

Figure 3-1: Methodology used in building modelling dataset from ANFI. 

} Append Data Pair 2 to 
Data Pair 1 

Abbildung 3-1: Die Entwicklung des Modellierungsdatensatzes aus den Originsldaten der Österreichischen 
Waldinventur. 

The decision to use the subplot for the modeHing resulted in a number of concerns. The first 

concern was whether it was appropriate to consider subplots as independent. Under the inventory 

specifications, the decision to split a plot into subplots is based on defined criteria at the time of 

measurement, indicating that there were significant differences between the subplots. This is not 

unexpected given the small stand sizes and therefore subplots can be assumed to be independent. 

Another concern was the estimation of per hectare values for some of the stand parameters. For 

example, if a plot was subdivided into two subplots, one representing 90% of the area and the 

other 10%. Under normal circumstances, in considering ingrowth or ongrowth, any new tree 

coming into a plot would represent 4 square meters of basal area per hectare (assuming a basal 

area factor of 4). Under the scenario of a subplot representing 1 0% of the total plot area, a single 

tree entering this subplot would actually contribute 40 square meters of basal per hectare. 

Hence, the change in basal area between time 1 and time 2 would be an increase in basal area of 

40 square meters. For this reason, some subplots did show very high change in basal area, up to 

160 square meters per hectare. Although these types of results were found, they were not 
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removed from the analysis because it was felt that the dataset was !arge enough that the influence 

of a single Observation would have little influence in the model fit. This was tested and found to 

be true. 

In order to account for the different re-measurement intervals, a variable (INTVAL) defining a 5 or 

6 year measurement interval was tested during the modeHing process to determine if the interval 

length brought a significant bias. 

The final dataset used for the modeHing process was made up of 1 8,076 subplots. 

3 . 1 .2 ModeHing Strategy 

The modelling strategy is hierarchical in structure, using two types of models, a probabilistic 

model to determine the probability of the response variable being present or absent in the future 

and a logarithmic regression model that, based on the result ofthe probabilistic model, quantifies 

to what degree the response variable will be present. Logistic regression was used for modeHing 

the probabilities and will be discussed in section (3.2). Linear regression with a log 

transformation of the response variable was used to estimate the quantities and will be discussed 

in section (3.3). 

The justification for using both a logistic and a logarithmic regression model versus a single 

linear regression model, where the quantity of the response variable would be directly predicted 

from the entire dataset, is based on the expected performance. The response variable in a logistic 

model is dichotomous, 0 if in the future the growth class or browse class are not present and 1 if 

they are present. The logistic models purpose, therefore, is simply to choose which variables 

discriminate, a future response of O or 1 ,  the "best". In essence the simple 0, 1 response variable 

is like stratification, thus it was expected that a reasonably good model could be found that 

differentiated these two cases. The logarithmic model is only needed when the logistic model 

has determined that in the future there would be a growth or browse class. Thus, the 

quantification model can be developed on a reduced dataset, one in which all the observations 

where, no growth class and no browse class present at time 2 have been deleted. This reduced 

dataset, was expected to also yield a much better fit than a model that was developed based on 
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the entire dataset. In other words, it was believed that two models developed on the stratified and 

reduced data would perform much better than one model developed on the entire dataset. 

The input data set for the logistic models was the modelling dataset as described in section 

(3. 1 . 1) .  In order to separate the data into more logical transitional groups and to deal with 

inherent deficiencies within the data, the data was stratified into several smaller datasets Figure 

3-2. For the logistic modelling of the wildlife browse classes, the data was split into two sub­

classes based on whether the browse class was present at time 1 or not. The splitting of the data 

into sub-classes was done for two reasons. The first was to differentiate what transitional 

progression was being modelled. For example, if the browse class is present at time 1, the 

factors which determine whether or not the class stays on a site, or disappears, are significantly 

different than those, when the browse class is not present at time 1 and encroaches onto a site. 

The second reason was, when the data was not split, it was very difficult to obtain a good fit with 

logistic regression. Furthermore, there were many interactions between covariates, thus making 

the coefficients very difficult to interpret. It was felt that two logistic models with better fits that 

were simpler and more interpretable were a better choice. 

In the logistic modeHing of the regeneration classes, the data was also split into two sub-classes 

based on whether the regeneration class was present at time 1 or not. The reasons were the same 

as for the wildlife browse classes. However, these two sub-classes were split again based on 

whether there were trees (greater than 5.0 cm) present in the plot at time 1 .  The reason for 

splitting the data into "with trees" at time 1 and "without trees" at time 1 was based on the ANFI 

data. Some stand parameters, such as crown competition factor (CCF), stand density index 

(SDI) and basal area (BA) are calculated only from those trees above 5.0 cm, suggesting for 

example, that a stand of REGEN I has no CCF, SDI and BA, which is definitely not the case and 

would erroneously affect the model. By splitting the data, advantage could be taken of BA, SDI 

and CCF when there are trees and could be ignored in the analysis when they are not appropriate. 

In Figure 3-2 the response variables have been updated to reflect the case that is being modelled. 

The "- 1 " after the name refers to present at time 1 and "- 0" refers to not present at time 1 .  The 

"with trees" and "without trees" refer to the status of the overstory at time 1 .  
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Once the logistic models were complete, began modeHing to  quantify the growth classes and the 

wildlife browse classes began. The input dataset for the linear regression modeHing was a 

stratified dataset, where only the Observations that were " correctly predicted " by the logistic 

model were used. There are two factors that must be mentioned at this point. Firstly, there was 

the option to stratify the input dataset differently, in a way that only Observations, where the 

percent share of the response variable at time 2 was greater than 0, were used. After some 

testing, it was found that the dataset that used the "correctly predicted values" consistently fit 

better with higher R2 values. The second factor that should be mentioned deals with cutoff 

values. The selection of the correctly predicted observations from logistic regression, is based 

on a threshold or cutoff probability. It was not initially clear what the most appropriate cutoff 

point should be. In order to aid in selecting the most appropriate cutoff point, the logistic model 

performance was tested using different cutoff points. It was determined that the a priori 

probability, (the ratio ofthe number of observations with a response of 1 at time 2 over the total 

number of observations), was the most appropriate. The results and a detailed discussion 

regarding the development of the input dataset for the logarithmic models and the selection of 

the most appropriate cutoffpoint are presented in section (3 .4). 

Once the probabilistic and quantity modeHing was complete, an overall performance evaluation 

of the two model strategy was carried out. Unfortunately, this was not done on an independent 

dataset so it could not be considered a true validation process. A more detailed explanation of 

the evaluation is presented in section (3 .5). 

3 . 1.2. 1 Cases where no models were fit 

From Figure 3-2 it can be seen that there were 5 cases where no models were fit, red crosses. The 

main reason was that there were insufficient observations to fit a model. However, it is still 

necessary to represent these events in application, even though they are not frequently observed. 

In the results section (0), a proposed method to represent each of the cases in application is 

presented. 
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Figure 3-2: The modeHing strategy; where the check marks indicate a model was fit and the crosses indicate that a 
model could not be fit. For the cross cases, alternative methods for making future prediction are presented in the 
results section. 
Abbildung 3-2: Die Modelle. Ein grüner Hacken bedeutet, dass ein Modell angepasst werden konnte, eins Kreuz 
bedeutet, dass kein Modell angepasst werden konnte. In diesen Fällen werden alternative Methoden der Schätzung 
im Ergebnisteil vorgestellt. 
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3.2 Logistic Regression 

3 .2. 1 Model Specifications 

Let Y denote a dichotomous (0, 1 )  response variable and x denote a value of an independent 

variable. The expected value of Y given x, is the conditional mean and expressed as E(YJx). If 

we denote 7T:(x) as the probability of a species being present (Y= l )  in the future for a given x, 

then the E(YJx) is p = probability(Y=l lx) = 7T:(x). Because the response variable is dichotomous, 

it is limited by the fact that 7T:(x) must be greater than or equal to zero and less than or equal to 1 

(0 :::; E(Yix) :::; 1) .  In order to meet this Iimitation, the characteristic s-shaped logistic distribution 

was chosen, represented by the logistic cumulative distribution function: 

exp<ßo+x,p, +x,p, ... +x,p, ) 
1 + exp<ßo +x,p, +x,p, ... +x,p, ) . 

The concept of linear regression is based on the assumption that E(YJx) can be expressed as a 

linear combination in x, 

With the logistic function this assumption cannot be met. However, by using the generalised 

linear model (McCullagh and Nedler, 1 983), the model above can be re-expressed as 

where g(.) is a link function which relates the probability of the presence of a species with the 

linear combination of the variables. The logistic link function 

is linear in its parameters and expands the 0 to 1 interval of the response variable to a -co to co 

interval (Bio et al. 1998). The transformation of p is referred to as the logit transformation with 

the g(p) term referred to as the logit. 
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In addition to the logistic link, the other two commonly used link functions are the probit link, 

which models the normal cumulative distribution function and compliment log-log link which 

models the extreme-value distribution function. The logistic model was chosen for this study 

because it is the most commonly used link function for dichotomous variables (Y ee & Mitchell, 

199 1 ;  Huisman et al., 1 993). 

3.2.2 Maximum Likelihood Estimation 

Under linear regression, the unknown parameters ßo, ß1 . . .  ßk are estimated using least squares 

methods. However, when the response variable is dichotomous, the desirable properties of these 

parameters, (unbiased, normally distributed and with a minimum variance among the 

parameters) are no Ionger the valid. In these cases the method of maximum likelihood 

estimation is used. This method yields estimates of the unknown regression parameters by 

maximising the probability of obtaining the observed set of data (Hosmer & Lemeshow, 2000, 

p.8). 

The basic concept is as follows. When the dichotomaus response variable Y = 1 , then p = 

probability(Y=l ix) = 11:(x). Conversely, when the dichotomaus response variable Y = 0 ,  thenp = 

probability(Y=Oix) = 1 - 11:(x). If Yi represents the response variable for the i-th Observation and 

Xi the vector of explanatory variables for the i-th observation, then the contribution by each 

(yi,Xi) pair in the search for the maximum probability is determined using the expression 

The maximum likelihood function is the product of each individual contribution of (Yi.Xi) 

expressed as follows: 

l(ß) = rr 7r(X; V' [1- !r(X; )r-y, (4. 1 )  
i=l 

where ß = (ßo, ßJ .. .ßk) the vector ofparameters. 

The calculation of the maximum likelihood is simplified using the log of equation ( 4 .1)  above. 

Thus the accepted log likelihood is 

L(ß) = ln�(ß)] = I {yi ln[�r(x;)]+ (1- Y; )ln[l - !r(X; )]} (4.2) 
i=l 
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To find the values of ß that maximise the log likelihood function (4.2), equation (4.2) can be 

differentiated with respect to ß and setting the resulting equations to zero. These equations are 

as follows. 

i>[yi -11"(X;)) = 0  
i=l 

n 

L[yi -11"(X;)] = 0 
i=l 

(4.3) 

(4.4) 

Equations (4.3) and (4.4) are called the maximum likelihood equations. Because these equations 

are non-linear in ß, numerical algorithms can be used to solve the nonlinear equations. In SAS 

(1990), the Fisher-scoring algorithm is used. 

3.2.3 Variable Selection 

The generalised linear models approach offers modellers the ability to model a variety of data 

types including discrete, categorical, ordinal and continuous under a single theoretical and 

computational framework (Yee & Mitehen 1991). For the most part, this study has followed the 

strategy proposed by Hosmer & Lerneshow (2000 p.91).  This strategy however, is not one of 

definitive rules, but rather a sound guide to follow. 

In this study this strategy began by ensuring that the 2 x 2 contingency table between each 

dummy variable and the response variable had no zero filled cells. In logistic regression, zero 

filled cells cause computational errors with fit statistics. When zero cells were encountered, the 

categories were either grouped with a similar dummy variable or deleted when it involved only a 

few records and no similar group could be found. 

At this stage, Hosmer and Lerneshow (2000) suggested a univariate analysis of all covariates to 

select those with at least a moderate (p-value < .25 for the individual Wald chi-square test) 

association with the response variable. The univariate model also provides a parameter estimate 
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that has not been adjusted by another through interaction or confounding. These parameter 

estimates are used later in the analysis to detect confounding and interactions. 

The next step involved stepwise logistic regression using SAS (1 990). The stepwise procedure 

was used to identify those covariates which seemed to be statistically important. A p-value < .05 

was used for both entry and removaL The stepwise selection procedure, based on the likelihood 

ratio, identifies at any step, the variable which produces the greatest change in the likelihood 

relative to a model not containing that variable. After the inclusion of a variable, all variables 

that no Ionger met the Wald chi-square probability of .05, were removed. The statistical 

inclusion of a variable using stepwise regression is an important step in model fitting, however 

as emphasised by Hosmer and Lemeshow(2000), variables must also be selected because of their 

biological significance. Those covariates not chosen by the stepwise procedure but were thought 

to have biological importance were continually returned to the analysis to ensure their parameter 

estimates were not statistically significant from zero. In no cases could the inclusion of a 

statistically insignificant variable be justified. 

The next step involved fitting the full multivariate model and examining the Wald test statistic 

for each individual covariate. Large Wald statistics indicate a high contribution to the model by 

the covariate. Although the score test and the Wald chi-square test give an indication of the 

variables contribution to the model and thus its possible effect on the likelihood ratio, the actual 

effect on the likelihood was tested by removing the covariate from the model and then refitting 

the model. This process of deleting and refitting was carried out until a ranking of the covariates 

was made, based on their effect on the likelihood ratio and their Wald test statistic. This was the 

basis for determining the order that covariates should be removed from the model. 

Because the stepwise procedure usually yielded far more covariates (up to 45) than would be 

considered parsimonious, it was necessary to remove covariates that significantly increased the 

likelihood ratio. In this study it was accepted that, in an attempt to find a parsimonious model, 

there would be a decrease in the likelihood ratio between the full multivariate model and the 

reduced model. While searching for a parsirnonious model, it was essential that, no known 

biologically important covariates were removed and those covariates which contributed least to 

the increase in the likelihood ratio were removed first. The final step was the grouping of dummy 
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variables with similar slope by testing, at a .05 Ievel of significance, whether similar coefficients 

were significantly different. 

Once a preliminary model was fit, the scale or the curve form of the continuous variables was 

evaluated. Because in the beginning of the modelling process, the scale of the continuous 

variables were unknown or only thought to be known, the procedure proposed by Hosmer & 

Lerneshow (2000, p.99) to determine the scale, was followed. Once an idea of the correct scale 

was established, the appropriate transformations were tested. The method of trying every 

possible transformation using the stepwise procedure was attempted and quickly discarded. 

The next stage involved checking for interactions. Using the coefficients from the univariate 

models, variables where the sign of their coefficients had changed or their coefficient changed 

markedly when compared to the univariate model, were identified. These cases indicated the 

presence of either confounding or an interaction. Using the stepwise regression procedure, while 

forcing all original covariates into the model, the interaction terms were tested. As with normal 

stepwise regression, the interactions must have a p-value < .05 for the Wald statistic. If the 

change in the likelihood ratio is not significant, the interaction term is considered a confounder 

and the interaction term not included in the model. If the likelihood ratio increase is significant, 

then the interaction terms is truly an interaction and should be included in the model. This 

process of testing possible interactions was carried out for all variables which had marked 

changes in their coefficients. Only interactions, which were biologically possible, were kept in 

the final model. 

To ensure that the final model was in fact biologically sound or followed known expectations, 

two dimensional and surface plots of the models were made. Each parameter was evaluated 

individually to see if its contribution was in fact so und. Variables, which clearly behaved against 

the expected relationship, were once again evaluated using the univariate model. If behaviour 

was clearly unexpected, variables were removed and the model refit. 
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3.2.4 Goodness of Fit 

3 .2.4.1 Cornputational Statistics 

A goodness of fit assessrnent was done after all the irnportant variables and interactions were 

entered into the rnodel. Goodness of fit is a description of how effective the rnodel is in 

describing the response variable. Unlike linear regression, the rnethods for assessing goodness­

of-fit for logistic regression are still begin developed. In the literature, there is a great deal of 

criticisrn concerning rnodellers lack of concem or lack ofunderstanding in performing goodness­

of-fit tests. One example is assessing the goodness-of-fit through the likelihood ratio test. As 

Hosrner et al. ( 1988) pointed out, this is no different than saying a rnodel fits using the F-test in 

linear regression. Another example is in the presentation by Ertsen et al. ( 1998) where several 

rnodels were evaluated using the ( c )  statistic. The authors suggested that a rnodel with a p­

value, based on the c statistic, of less than 0.05 was poorly predicted. If the p-value was 

between 0.05 and 0.5, the rnodel predicted rnoderately weH and a rnodel with a p-value of greater 

than 0.5 predicted very well. This ranking of performance based on the c statistic is incorrect, 

since one cannot select the "best rnodel", using the c statistic, frorn a collection of rnodels that 

all fit (Hosrner & Lerneshow 2000, p . l 83). 

Another problern deals with the Pearson Chi-square and Deviance statistic. During the rnodel 

building stage, the degrees of freedorn for tests are based on the number of variables in the 

cornpeting rnodels. However, in assessing the goodness of fit, concem is focused on the nurnber 

of covariate pattems. A covariate pattem is a unique cornbination of values for the covariates in 

the rnodel. When the number of observations increase and the number of covariate pattems 

increase, the distributional results are said to be based on n-asymptotics. When the number of 

observations increases but not the number of covariate pattems, the distributional results are said 

to be based on m-asymptotics. When Chi-square statistics are calculated under n-asymptotics, 

the p-values are incorrect. The problern with the p-values cornes frorn the fact that under n­

asymptotics, the required minirnum of 5 observations per cell is not rnet. 
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For this reason, the Chi-square statistic and the Deviance statistic were not used to evaluate the 

models for goodness-of-fit. The alternative test was the Hosmer and Lerneshow test statistic ( c )  

(Hosmer et al. 1 988) using two different grouping strategies. In the first grouping strategy, the 

( c )  statistic was calculated by arranging the predicted responses in ascending order, then 

grouping them into 1 0  classes {k groups), each with approximately the same number of 

predictions. The second grouping strategy was to use defined cutpoints, which in this study were 

10 fixed probability classes. For each model the Hosmer Lerneshow goodness-of-fit criterion 

( c ), using both grouping strategies, was calculated according to the Pearson Chi-square statistic: 

Where nk is the number of observations in the k1h group, ok the number of observed responses in 

the k1h group and Jfk is the average estimated probability for the k1h group. 

The reason for using both grouping strategies was to deal with problems that anse from 

goodness-of-fit testing when the estimated probabilities, the proportion of the response variable 

that is 1 in relation to the total number of observations, are small (< 0. 1 )  or very large (> 0.9 ), 

something that was common in the models used in this study. Hosmer et al. (1 988) cautioned the 

use of any fit statistic in these cases. The problern is similar to the problern with the Chi-square 

statistic and the Deviance statistic where the required minimum of 5 observations per cell are not 

met. In an example with a model with a very small estimated probability, the authors used both 

grouping strategies using the rational that, although the p-values were inaccurate, if both 

grouping strategies proved to have an insignificant fit, the p-values were accurate enough for 

hypothesis testing. This study required the c statistic for both grouping strategies to be 

insignificant. 

The c statistic is a very sensitive statistic when the model does not fit. This means its value can 

vary drastically, from having a p-value of 0.4 (model fits) to have a p-value of .002 (model does 

not fit), with the addition or removal of a single independent variable. When the c statistic 

behaves irradically, it is a good indication that there are still problems with the model fit: most 

likely an independent variable has the wrong scale, an important variable is missing or an 
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interaction tenn is missing. This study found that when the model truly fits, c becomes stable, 

such that small changes (addition or removal) of the least important independent variables, 

results only in small changes in c statistics. 

3.2.4.2 Regression Diagnostics 

In linear regression, residual plots are essential to test assumptions and evaluate goodness-of-fit. 

In logistic regression, although the residual plots do not possess the same importance as in linear 

regression, they however can be useful in an analysis by identifying outliers and poorly fit data. 

There are three important diagnostic plots; Delta Chi-Square versus irj , Delta Deviance versus 

irj and Delta Betas versus irj . Each point in these plots reflects the size of the change in the 

chi-square, deviance and the estimated parameters, when that particular covariate pattem is 

removed from the dataset and the model is refit. In Hosmer & Lerneshow (2000) there is an 

excellent discussion about the uses and interpretation of these plots. These plots were used for 

two purposes. The first was in helping detennine if the model was nearing a good fit. If the 

model nears a good fit, there are usually some values in the diagnostic plots that are "very" 

extreme. This, in conjunction with, an unstable c statistic suggests that the model still needed 

more work. The second use was in isolating events that are illogical and go against the logic of 

the model. These appear as !arge residuals in the plots and can easily be isolated and reviewed. 

A good example is a subplot with 100% blueberry at time 1 then after 5 years having no 

blueberry at all, when there have been no notable changes in the stand. Understanding the nature 

of blueberry, one could not logically explain this, unless there was some typographical error or 

some intervention by man such as liming. These illogical events were noted, however, data was 

never deleted unless it was clearly a typographical error. These notes would be used when the 

model was applied to help identify situations where the model could behave poorly. 

3 .2.4.3 Refinement 

A model is said to be refined when the range ofpredictions produced by the model, span the full 

probability range betWeen 0 and 1 (Pearce & Ferrier 2000a). Moderate refinement is essential 

when assessing a models perfonnance. A model that is poorly refined but is well calibrated is 

very unlikely to discriminate weil, even though it is possible for a model that is weil calibrated 
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and weH refined to discriminate poorly, it is less likely. Thus as the variance o f  the predicted 

probabilities increases, the refinement increases. Refinement was evaluated graphically. 

3.2.4.4 Classification Tables and the Ability to Discriminate 

A 2 x 2 classification table between the observed values, in this case the dichotomous (0, 1 )  and 

the predicted values dichotomised using a chosen cutvalue, can be constructed. The terminology 

used to address the parts of the 2 x 2 classification table are important for the following 

discussion and are therefore are summarised in Table 3 - 1 .  If an event occurred (1 )  and the 

model predicted that an event occurred (1 ), this observation would be represented in the true 

positive cell. The proportion of correctly predicted events over the total number of observed 

events is referred to as the sensitivity (true positive/(true positive + false negative)). If an event 

occurred and the model predicted that it did not occur, this observation would be represented in 

the false negative cell. If an event did not occur (0), non-event, and the model predicted that an 

event did not occur (0), this observation would be represented in the true negative cell. The 

proportion of correctly predicted non-events over the total number of observed non-events is 

referred to as the specificity (true negative/(true negative + false positive)). If an event did not 

occur and the model predicted that it did occur, this observation would be represented in the false 

positive cell 

Table 3-1: Naming of the cells within a 2 x 2 contingency table. 
Tabelle 3-1: Bezeichnung der Felder einer 2 x 2 Kontingenztafel fiir die beobachtet Klassifizierung und jene nach 
den Modellen. 

Observed 

Predicted 1 0 

1 True Positive (Sensitivity) False Positive 

0 False Negative True Negative (Specificity) 

If a model is weil calibrated and has moderate refinement, the models ability to discriminate can 

be evaluated using a classification table (Pearce & Ferrier 2000a). However, discrimination 

cannot be used as a measure to assess goodness-of-fit since it does not meet the criteria for 

goodness-of-fit: "that the distances between observed and expected values be unsystematic and 

within the variation ofthe model" (Hosmer & Lerneshow 2000, p l 57). It is therefore possible to 
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find a model that discriminates well and fits poorly. Furthermore, the ability to discriminate is 

based on the definition of the cutoff value. There are several intuitive cutofflthreshold values 

that one could use: 1 )  0.5 which represents an even split; 2) where the maximum discrimination 

occurs (sensitivity + specificity are at a maximum); 3) where maximum discrimination for both 

sensitivity and specificity, occur together; 4) at the a priori probability level; 5) at a probability 

level where the a priori probability is found in the predicted data. The choice of the cutoff value 

for habitat modeHing is usually based on the a priori probability of the occurrence of the species 

ofinterest (Pearce & Ferrier 2000a). However, any probability level can be chosen, ifjustifiable. 

One measure of discrimination that it is independent of both species prevalence and decision 

threshold is the area under the receiver operating characteristic curve (ROC) (Hanley & McNeil 

1 982; Hanley & McNeil 1983; Pearce & Ferrier 2000a; Pearce & Ferrier 2000b). It plots the 

probability of predicting an event correctly (sensitivity) versus the probability of predicting a 

non-event as an event (1 -specificity) for an entire range of cutpoints Figure 3-3.  Essentially, it is 

a summary of all the sensitivities and 1-specificities, found in all the 2 x 2 contingency tables for 

all the unique cutpoints within the data. There are two uses for this plot; first, it can aid a 

modeHer in choosing an appropriate cutoff value and second, it can aid a modeHer in choosing 

one model over another when both models fit. 

ROC Curve 

0.8 

� 0.6 
:e VJ <:: (!) 0.4 (/) 

0.2 

1 - Specificity 
Figure 3-3: Receiver Operating Characteristic curve. 
Abbildung 3-3: Die ,,Receiver Operating Characteristic" Kurve. 
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This is  done by comparing their ability to  discriminate using the areas under the curve. Areas of 

0.5 to 0.7 indicate poor discrimination, 0.7 to 0.8 indicate moderate discrimination and rates 

higher than 0.9 are excellent (Hosmer and Lemeshow, 2000 p. l 62). 

3.3 Logarithmic Regression 

3.3 . 1  Model Specification and Variable Selection 

Under a two model system, the logistic model determined whether a particular response variable 

was present or absent in the future. If it was decided that it would be present in the future then 

the next question is, in what quantity? To quantify the response variables, a natural log 

transformation ofthe response variable was chosen taking the form; 

The choice to use a log transformation was based the fact that the distribution of the dependent 

variables were skewed to the right and log transformations aided in reducing skewness. This 

was supported after testing several model forms with the log transformations yielded 

significantly better fits than untransformed models in terms of R2• The one drawbackofusing a 

log transformation is the transformation bias when untransforming the response variable. One 

option to correct this bias, is to add one-half of the model mean square error (MSE) to the logit 

ofthe final equation (Meyer 1 941 ; Miller 1 984). 

To find the best fitting model, least squares methods were used. As with the logistic models, 

stepwise regression was used to identify the independent variables that were most related to the 

response variable. In search of a parsimonious model, in some cases, variables, which had 

estimated parameters that were significantly different from zero, were removed. The continuous 

variables were tested for scale and possible interactions. The final step was the grouping of 

dummy variables with similar slopes. Plots of the final models were made to ensure that model 

behaviour under different conditions was consistent with known behaviour. 
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3.3.2 Residual Analysis 

The scatter of the residuals plotted against the predicted values and each of the independent 

variables, where examined to ensure that the plotted residuals did not display an apparent pattem 

and where scattered unifonnly and regularly around the null axis. A trend in the residual plots 

against the predicted values would have suggested that the model was inadequate and one or 

more of the independent variables required some type of transfonnation. To test the assumption 

of homoscedasticity, a plot ofthe residuals against each independent variable was carried out. If 

the width ofthe residuals varied systematically, for different values of an independent variable, 

the variance of the residuals was not constant for different values of the independent variable, a 

violation of the assumption of homoscedasticity. It should be noted that the assessment of the 

residuals was complicated by the fact that the response variables were ordinally scaled integers, 

from 1 - 1 0, thus the scatter plots possessed the "integer effect". To aid in this assessment, the 

means of the residuals, grouped into 1 0  classes were also plotted and evaluated. The variance 

inflation factor was used to test for multicollinearity. Variables with high variance inflation 

factors were systematically removed from the model until no variable had a variance inflation 

factor greater than 5 (V an Laar 1 99 1) .  

3.4 The Development of the Input Dataset for the Logarithmic Models 

The choices of how to model the quantification ofthe growth and browse classes was not simple. 

The first question was, on what basis was the stratified dataset, to be used as input to the 

logarithmic model, to be made? Two choices were available, 1 )  use only the observations that 

were " correctly predicted " by the logistic model or, 2) use only the Observations where the 

percent share of the regen class or browse class at time 2 was greater than 0. This dataset is 

referred to as the " observed only"  dataset. 

To answer this question, the perfonnance of the combined logistic and regression model system 

was evaluated, using both input datasets, for the BLUEBERRY BROWSE classes. The methodology 

was simple, the logistic model for blueberry, when blueberry was present at time 1 ,  was already 

fit and considered a constant (Table B - 1 5) .  To construct the " observed only "  dataset, all 

observations where the observed percent share ofblueberry at time 2 was zero, were deleted. To 
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construct the " correctly predicted " dataset, the cutoff probability was set to the a priori 

probability for blueberry, which was 0.84, and all observations that were incorrectly classified 

were deleted. The choice to use the a priori probability was made based on the fact that it was 

grounded to the distribution of the original data. The cutoff probability could theoretically have 

been set at any probability level resulting in significantly different results. 

Using each of the datasets, two linear regression models with the natural log ofthe percent share 

of blueberry at time 2 as the dependent variable were fit. In order to use a natural logarithm, the 

dependent variable was re-scaled from 0 - 10 to 1 - 1 1 , however all results are presented and 

discussed on the original 0 - 1 0  scale. The " observed only" model with its fit statistics are 

presented in (Table 3-2). The " correctly predicted " model with its fit statistics is presented in 

(Table C - 15) .  To evaluate the overall performance of the combined models, the probability of 

blueberry, for each observation, was predicted for the original blueberry dataset (the dataset used 

to fit the logistic model). Then, it was again necessary to specify a cutoff probability to 

determine if blueberry would be present at time 2. If the logistic model, based on the cutoff 

probability, predicted that there would be blueberry present at time 2, the percent share of 

blueberry at time 2 was predicted using the two linear regression models. A range of cutoff 

probabilities was tested to see how the model performance changed with respect to varied cutoff 

probabilities. 

Histograms presenting the observed and predicted frequencies, were plotted for each percent 

share class, for different cutoff probabilities. The results for the " correctly predicted " versus the 

" observed only "  dataset are shown in Figure 3-4 and Figure 3-5 respectively. 

Once the results were obtained, it was necessary to specify the criteria that would constitute 

"good" model performance. The first criteria was an evaluation of the fit between the " correctly 

predicted " and the " observed only "  models. From Table C - 15  and Table 3-2 it is seen that the 

" correctly predicted " model has a higher coefficient of determination (R2=0.7489) compared to 

the " observed only "  (R2=0.5455) . The reason for this significant difference has to do with the 

input dataset. The " observed only "  is an improvement over the whole dataset because of the 

stratification. But the stratification is one sided, such that the variation of the data that is used, 

still possess the full variability for those observations. In the " correctly predicted " dataset, the 
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observations that had the greatest variability were removed because they would have been poorly 

predicted by the logistic model. The concept is that there is no need to continue to model the 

poorly predicted Observations, the logistic model has already made choice of whether or not 

blueberry will be there or not at time 2. All wrongly classified observations are already in error. 

There is no need to continue to proliferate the error by including those in the second quantitative 

model. 

Table 3-2: Logarithmic regression for BLUEBERRY - 1  using the " observed only" dataset. The table presents the 
model parameters, their description, estimated coefficient, standard error and p-value. Below the table is the R' and 
the number of observations used to fit the model. 

Tabelle 3-2: Logarithmische Regression fiir Heidelbeere - 1, geschätzt aus den "Observed only" Daten. Die Tabelle 
enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, ihre Standardfehler und die 
Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. Unter der Tabelle steht das Bestimmtheilsmaß und die 
Anzahl der Beobachtungen. 

Parameter 

INTERCEPT 

A_HESH_Tl 

ELEV 

SLPE 

STANGSH_T2 

INTVAL 

GVD5 

GVDJ8 

GVD4, 12 

STDO_TJ, STDJ_T2 

STDIO_T2 

SCD5 

SCD7 

GZDI 

= 0.5455 
n = 4670 

Parameter 
Descri tion 

Intercept 

B1ueberry Browse 

Elevation 

Slope 

Pole Stand 

Interval Value 

Luxuriant Moss 
Type 

Seep Vegetation 
Type 

Moderhumus in 
Conifer Stands or 
Competing Grass 

Cover 

No Trees in Angle 
Count or Norway 

Spruce 

Beech 

Soil Group 5 

Soil Group 7 

Growth Zone 1 

Parameter Estimate 

0.47626 

0.14781 

0.01313 

-0.01338 

-0.01098 

0.03930 

0.08772 

-0.27217 

-0.08984 

-0.05416 

-0.15752 

0.05065 

0.13601 

-0.05857 

Standard Error 

0.05744 

0.00271 

0.00139 

0.00242 

0.00197 

0.00979 

0.01579 

0.07029 

0.01515 

0.01020 

0.05485 

0.01722 

0.05211 

0.01675 

Pr > ltl 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

0.0001 

<.0001 

<.0001 

0.0041 

0.0033 

0.0091 

0.0005 
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Cutoff Probability 0.6 Cutoff Probabiity 0.85 
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Figure 3-4: Distribution of observed versus the predicted values for different cutoff probabilities based on the 
dataset fitted using the "correctly predicted" data. The A Priori Probability for blueberry is 0.84. 
Abbildung 3-4: Verteilung von beobachteten und geschätzten Werten fiir verschiedene Schwellenwerte fiir den 
Datensatz mit richtig vorhergesagten Werten ("Correctly Predicted"). Die a priori Wahrscheinlichkeit fiir 
Heidelbeere beträgt 0.84. 
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� :� �� � '��'�'�'�'�'�-,- �� � :� �� � �h���,�- I� 
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 

% Blt.eberry at time 2 % Blueberry at time 2 

Cutoff Probabiity 0.7 Cutoff Probabiity 0. 75 

J :� l�,� '�'�'� �'�'�'� - I� j :� �� � ��'�'�'�'�'�'- I� 
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 

% Blt.eberry at time 2 % Blueberry at time 2 

Cutoff Probabiity 0.8 Cutoff Probabiity 0.84 

1 � I� � ,� �,� � [I [I 0 

2400 

I� �� I�� l� � ll �''" '" _  I� """ 

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 
% Blt.eberry at time 2 % Blueberry at time 2 

Figure 3-5: Distribution of observed versus the predicted values for different cutoffprobabilities based on the 
dataset fitted using the "observed only" data. The A Priori Probability for blueberry is 0.84. 
Abbildung 3-5: Verteilung von beobachteten und geschätzten Werten für verschiedene Schwellenwerte für den 
ursprünglichen Datensatz "Observed Only". Die a priori Wahrscheinlichkeit für Heidelbeere beträgt 0.84. 
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When viewing the histograms, it was clear that the predictions using the " observed only" dataset 

significantly underestimated the percent share 1 class, in all cases. This underlined the fact that 

the predictions should have a similar distribution to the observed data and are therefore, 

unbiased. Analysing the results of the "correctly predicted " dataset, it is clear that somewhere 

between a cutoff value of 0.65 and 0.70 the distribution of the predicted is very near the 

observed. It is not a coincidence that at a cutoff value of 0.68, the ratio of the predictions where 

there is blueberry at time 2 over all observations, is 0.84, the a priori probability. This result is 

not only convenient but provides a sound basis for choosing cutoff probabilities. One may argue 

that other factors could be considered, such as maximising discrimination or maximising 

sensitivity and specificity. From the logistic run, maximum discrimination was achieved at a 

cutoff probability of 0.55. Maximisation of both sensitivity and specificity was at a cutoff 

probability of 0.80. Clearly from the results presented in Figure 3-4 and Figure 3-5, neither of 

these choices would be acceptable in terms ofthe distribution ofthe predictions. 

Because the predictions of the percent share at time 2 were continuous and needed to be 

categorised, the cutoff points for the different classes also affected the results. Several different 

cutoff strategies were tested in order to improve the distribution of the predictions of the 

" observed only "  dataset. It was possible to improve the performance in the percent share 1 class 

by raising its maximum cutoff point, however this was always at the cost of another class. So, 

why did the " observed only"  dataset predictions behave so poorly? The most obvious reason is 

the intercept of 0.47626 (natural logarithmic scale using 1 - 1 1  to represent 0 - 10). This 

intercept was expected since all observation with no blueberry at time 2 were deleted, hence 

there were no zeros in the dataset. Thus, there were no null observations in the data to force the 

model through zero. 

Comparatively, the " correctly predicted " dataset included zeros in the dataset thus the intercept 

was -0.09560 (natural logarithmic scale using 1 - 1 1  to represent 0 - 10), much nearer to zero. 

The final choice for Cutoff points for categorising the predictions from the " correctly predicted " 

dataset are presented in Table 3-3. 
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Table 3-3: The Cutoffpoints for categorising the predictions for the " correctly predicted" dataset. 

Tabelle 3-3: Die Schwellenwerte zur Klassifizierung mit den Modellen fiir den "Correctly Predicted-Datensatz". 

Percent Blueberry Class 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Predicted Range 
0 

> 0 to 1 
> 1 to 2 
> 2 to 3 
> 3 to 4 
> 4  to 5 
> 5 to 6 
> 6 to 7 
> 7  to 8 
> 8 to 9 

> 9  

Because the above analysis was based only on half of the blueberry data, the same procedure for 

blueberry, when blueberry was not present at time 1 ,  was carried out. The results were similar 

supporting the " correctly predicted " dataset as the input dataset for the logarithmic models. 

Based on the results above, the modeHing strategy, where the correctly classified observations, 

based on the a priori probability, are used as the input dataset for the logarithmic model was 

chosen. This methodology was followed for the development of the remainder of the 

logarithmic models. 

3.5 Evaluation of Overall Performance 

The evaluation of model performance should be done using a validation procedure on an 

independent dataset (Pearce & Ferrier 2000a). When it is done on the same dataset the model 

will tend to always perform in an optimistic manner. One option at the beginning of the 

modeHing process was to exclude a portion for validation. However it was decided not to do this 

for two reasons. The first was that for some of the response variables, the datasets would be 

reduced to a size that could !;acrifice model fit. Secondly, a dataset from 1 991  in the Gleinalm 

region of Austria was already available and there were plans to collect the time 2 data in 200 1 .  

This would b e  an excellent dataset t o  evaluate the model fits. 

Because a two model system was applied, there was a temptation to evaluate the performance of 

each model, from a model pair independently. For the logistic regression, one measure of 
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perfonnance is  through the ability to  discriminate, which was tested using the area under the 

ROC curve. However, for the regression it was not as simple. The regression was based on a 

reduced dataset, which would be expected to be biased. This was confinned using the 

simultaneous F-test. The simultaneous F-test involves regressing the observed values against the 

predicted values of the entire dataset. The resulting simple linear equation would be in the fonn 

of 

y = a + b(x). 

Using an Analysis of Variance (ANOVA) table it is possible to test if the predicted values are 

not significantly different from the observed, thus testing the hypothesis H0: a=O and b=l an 

intercept of 0 (a=O) and a slope of 1 (b=l ). Any significant differences would be considered a 

bias. Both the " correctly predicted " and the " observed only "  datasets, discussed in section 

(3.4), were biased. 

This Ieads to the recognition that overall model perfonnance could not be evaluated on the sum 

of its parts, but rather only as a whole. This is intuitively correct, since the regression model is 

not independent of the logistic model. Firstly, because the choice of whether a particular 

response variable will be present or not in the future, is a decision made by the logistic model, 

and secondly, because the model that predicts the quantity is modelled using only those 

observations that were correctly predicted by the logistic model. 

Therefore, in addition to the individual model perfonnance measures, evaluation of the overall 

perfonnance each of the two model pairs (logistic and logarithmic regression) was done using 

the Efficiency (EF) measure according to Mayer & Butler ( 1993). Efficiency is calculated as 

The efficiency is similar to the coefficient of multiple detennination (R2), however because the 

value of EF can be between - o0 and 1, its interpretation is different. An EF value of 0 suggests 

that the model is no better than the average, an EF value nearing 1 suggests an efficient model, a 

negative EF value suggests that the model is biased. 



42 

As seen in section (3.4) the evaluation ofperfonnance must also be based on a comparison of the 

future distribution of predicted values compared to the observed distribution. Reimoser and 

Zandl (1 994, pp.94) stated that judgements of indices should not be based on single plots but 

rather on larger areas, at least 1 Oüha. Because this is important, the distribution of predicted 

values must be similar to the distribution of the observed. It is therefore necessary to evaluate 

the perfonnance of each of the models in obtaining the correct distribution. To accomplish this, 

the predicted frequency of each quantity class, for different cutpoints, was plotted against the 

frequency hlstogram for observed quantities. 

In summary, the perfonnance of the models will be assessed; 1 )  individually, and 2) as model 

pairs using the efficiency statistic and by evaluating the predicted distributions to the observed. 
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4.1 Logistic Models 
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In order to predict the 14 HSI parameters, 28 logistic models were fit using stepwise regression. 

The models can be divided into two categories, those predicting the probability of the presence 

or absence of the future growth classes and those predicting the probability of the presence or 

absence of the wildlife browse classes. Appendix B presents the tables containing the important 

parameters that both statistically contribute in the prediction of the response variable, their 

associated estimated coefficient, their standard error and their respective Wald Chi-Square 

probability. Below each table is the number of observations in the dataset, the a priori 

probability, the probability level where the a priori probability was found in the predictions 

(threshold), the Hosmer and Lerneshow test results (calculated using an equal number of 

observations per group) and the area under the ROC curve. Example Tables are presented in the 

text for CONIFER BROWSE. Note, these example tables do not appear as the first example but 

rather maintain the original ordering. CONIFER BROWSE was selected as an example because it  

represented both the forest and wildlife disciplines. A summary ofthe fit statistics are presented 

in Table 4-5. 

4. 1 . 1  Growth Classes 

REGEN I 

For REGEN I a total of two models were fit. The first model represented the case where REGEN I 

was present at time 1 with trees in the overstory (REGEN I - 1 with trees). The parameters and the 

corresponding fit statistics are represented in Table B - 1 .  The second model represented the 

case where REGEN I was present at time 1 and there were no trees in the overstory {REGEN I - 1 

with no trees). The parameters and the corresponding fit statistics are represented in Table B - 2. 

For both models all the variables are significant based on the Wald chi-square test at level 

o.=0.05. For the REGEN I - 1 with trees model, the value for the Hosmer Lerneshow statistics is 

1 1 .4682 (p-values of 0.1 766 with 8 degrees of freedom). For the REGEN I - 1 no tree model the 

value for the Hosmer Lerneshow statistic is 1 0.0366 (p-values of 0.2625 with 8 degrees of 

freedom). These p-values are large, far exceeding the o.=0.05 level so there is no strong evidence 
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showing a disagreement between the predicted and observed presence and absence of REGEN I at 

time 2. The models are statistically well-fitted. The areas under the ROC curves are .76 and .77 

respectively, suggesting that they discriminate moderately weil. 

For the REGEN I - 0 with trees case, no model was fit because the relative frequency of REGEN I 

encroaching onto a site at time 2, when it is not present at time 1 and is overtopped by an 

overstory is 0.9%. In application, it is suggested that in these cases, 0.9% of the subplots be 

randomly chosen to have Regen I at time 2. 

REGEN il 

For REGEN II a total of 4 models were fit. The first model represented the case where REGEN II 
was present at time 1 with trees in the overstory {REGEN II - 1 with trees). The parameters and 

the corresponding fit statistics are represented in Table B - 3. The second model represented the 

case where REGEN II was present at time 1 and there were no trees in the overstory {REGEN II - 1 

with no trees). The parameters and the corresponding fit statistics are represented in Table B - 4. 

The third model represented the case where REGEN II was not present at time 1 with trees in the 

overstory (REGEN II - 0 with trees). The parameters and the corresponding fit statistics are 

represented in Table B - 5 .  The fourth model represented the case where REGEN II was not 

present at time 1 and there were no trees in the overstory {REGEN II - 0 with no trees). The 

parameters and the corresponding fit statistics are represented in Table B - 6. In all the models, 

all the variables are significant based on the Wald chi-square test at level a=0.05. For the REGEN 

II - 1 with trees model, the value for the Hosmer Lerneshow statistics is 8.2781 (p-values of 

0.4068 with 8 degrees of freedom). For the REGEN II - 1 no tree model, the value for the 

Hosmer Lerneshow statistic is 7.8098 (p-values of 0.4523 with 8 degrees of freedom). For the 

REGEN II - 0 with trees model, the value for the Hosmer Lerneshow statistic is 3.0400 (p-values 

of 0.93 1 8  with 8 degrees of freedom). For the REGEN II - 0 no tree model, the value for the 

Hosmer Lerneshow statistic is 12.5077 (p-value of 0. 1299 with 8 degrees of freedom). These p­

values are large, far exceeding the a=0.05 level so there is no strong evidence showing a 

disagreement between the predicted and observed presence and absence of REGEN II at time 2. 

The models are statistically well-fitted. The areas under the ROC curves are .76, .72, .79 and .85 

respectively, suggesting that the models discriminate moderately weil. 
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4. 1 .2 Wildlife Browse Classes 

For the wildlife browse classes each dataset was divided into two datasets based on whether the 

wildlife browse class was present or absent at time 1 .  Therefore for each wildlife browse class, 

two models were fit totalling 20 models. 

NO BROWSE 

For the No BROWSE class a total of two models were fit. The first model represented the case 

where No BROWSE was present at time 1 (No BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table B - 7. The second model represented the 

case where No BROWSE was not present at time 1 (No BROWSE - 0). The parameters and the 

corresponding fit statistics are represented in Table B - 8 .  For both models all the variables are 

significant based on the Wald chi-square test at level a=0.05. For the No BROWSE - 1 the value 

for the Hosmer Lerneshow statistics is 5.6990 (p-values of 0.6809 with 8 degrees of freedom). 

For the No BROWSE - 0 model the value for the Hosmer Lerneshow statistic is 12.9188  (p­

values of 0. 1 1 47 with 8 degrees of freedom). These p-values are large, far exceeding the a=0.05 

level so there is no strong evidence showing a disagreement between the predicted and observed 

values. The models are statistically well-fitted. The areas under the ROC curves are .83 and .73 

respectively, suggesting that they discriminate moderately weil. 

CONIFER BROWSE 

For the CONIFER BROWSE class a total of two models were fit. The first model represented the 

case where CONIFER BROWSE was present at time 1 (CONIFER BROWSE - 1) .  The parameters and 

the corresponding fit statistics are represented in Table 4-1 .  The second model represented the 

case where CONIFER BROWSE was not present at time 1 (CONIFER BROWSE - 0). The parameters 

and the corresponding fit statistics are represented in Table 4-2. For both models all the 

variables are significant based on the Wald chi-square test at level a=0.05. For the CONIFER 

BROWSE - 1 the value for the Hosmer Lerneshow statistics is 6.2266 (p-values of 0.62 19 with 8 

degrees of freedom). For the CONIFER BROWSE - 0 model the value for the Hosmer Lerneshow 

statistic is 12.0080 (p-values of0.1508 with 8 degrees of freedom). These p-values are large, far 

exceeding the a=0.05 level so there is no strong evidence showing a disagreement between the 

predicted and observed values. The models are statistically well-fitted. The areas under the ROC 

curves are .74 and .73 respectively, suggesting that they discriminate moderately well. 
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Table 4- 1 :  Logistic regression for Conifer Browse - I. Presented in the table are the rnodel parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosrner & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the rnodel. 

Tabelle 4-1 :  Logistische Regression für Nadelbäume - I .  Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosrner & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 8.43 1 3  0.3625 <.0001 

INTVAL Interval Value - 1 . 1 694 0.061 8  <.0001 

STDJ_T2 Norway Spruce -0.3365 0.0632 <.0001 

SCD4,1 7,18 Soil Group 4, 17,  18 0.3 120 0.0609 <.0001 

SCD6 Soil Group 6 0.6273 0.2340 0.0073 

GVDJ Shade Herb Type -0.5952 0. 1 1 69 <.0001 

C BA Change in Basal -0.01 17 0.00353 0.0009 
Area 

A_NOSH_Tl No Browse -0. 1 828 0.0135 <.0001 

GZD12, 1 7,18 Growth Zone 1 2, 0.3413 0.0825 <.0001 17, 1 8  

SSDJ_T2 1 Layer Stand -0. 1 576 0.0680 0.0204 

JUNGIISH_Tl Regen II -0.02 14 0.00785 0.0063 

STANGSH_T2 Pole Stand -0.1327 0.0 1 1 1  <.0001 

Hosmer-Lemeshow statistic = 6.2266 with 8 DF (p=0.6219) 
ROC = .74 
A Priori Probability = .69, Threshold Probability = .63 
n = 6301 
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Table 4-2: Logistic regression for Conifer Browse - 0. Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer Lerneshow test statistic 
and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and the 
number of observations used to fit the model. 

Tabelle 4-2: Logistische Regression fiir Nadelbäume - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTER CE PT Intercept -4.2024 0.3968 <.0001 

ELEV Elevation 0.2668 0.03 5 1  <.0001 

ELEV2 Elevation Squared -0.0122 0.00 1 8 1  <.0001 

INTVAL Interval Value 0.3206 0.0624 <.0001 

STDO_T2 No Trees in Angle 1 .3 140 0.0837 <.0001 
Count 

GZD18,20 Growth Zone 1 8, 20 0.71 59 0.091 0  <.0001 

SSDI_T2 1 Layer Stand -0.7500 0. 1 228 <.0001 

SSD2_T2 2 Layer Stand -0.5 1 88 0. 1 373 0.0002 

GVDJ Shade Herb Type -0.6053 0. 1 093 <.0001 

GVD6 Sparse Moss Type 0.3849 0.0745 <.0001 

Hosmer-Lemeshow statistic =12.0080 with 8 DF (p= 0 .1508) 
ROC = .73 
A Priori Probability = . 1 1, Threshold Probability = .20 
n = 11758 

DECIDUOUS BROWSE 

For the DECIDUOUS BROWSE class a total oftwo models were fit. The first model represented the 

case where DECIDUOUS BROWSE was present at time 1 (DECIDUOUS BROWSE - 1 ). The 

parameters and the corresponding fit statistics are represented in Table B - 9 .  The second model 

represented the case where DEcmuous BROWSE was not present at time 1 (DECIDUOUS BROWSE 

- 0). The parameters and the corresponding fit statistics are represented in Table B - 1 0. For both 

models all the variables are significant based on the Wald chi-square test at level a=O.OS. For 

the DECIDUOUS BROWSE - 1 the value for the Hosmer Lerneshow statistics is 6.4478 (p-values 

of 0.5972 with 8 degrees of freedom). For the DECIDUOUS BROWSE - 0 model the value for the 

Hosmer Lerneshow statistic is 3.3892 (p-values of 0.9076 with 8 degrees of freedom). These p­

values are !arge, far exceeding the a=O.OS Ievel so there is no strong evidence showing a 
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disagreernent between the predicted and observed values. The rnodels are statistically well-fitted. 

The areas under the ROC curves are .70 and .78 respectively, suggesting that they discriminate 

moderately weiL 

SHRUB BROWSE 

For the SHRUB BROWSE class a total oftwo models were fit. The first model represented the case 

where SHRUB BROWSE was present at time 1 (SHRUB BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table B - 1 1 . The second model represented the 

case where SHRUB BROWSE was not present at time 1 (SHRUB BROWSE - 0). The parameters and 

the corresponding fit statistics are represented in Table B - 12. For both models all the variables 

are significant based on the Wald chi-square test at level a=O.OS. For the SHRUB BROWSE - 1 the 

value for the Hosrner Lerneshow statistics is 5 .9022 (p-values of 0.6582 with 8 degrees of 

freedom). For the SHRUB BROWSE - 0 model the value for the Hosrner Lerneshow statistic is 

14.2304 (p-values of 0.0760 with 8 degrees offreedom). These p-values exceed the a=O.OS level 

so there is no evidence showing a disagreement between the predicted and observed values. The 

models are statistically well-fitted. The areas under the ROC curves are .71 and . 80 

respectively, suggesting that they discriminate moderately weil. 

RASPBERRY BROWSE 

For the RASPBERRY BROWSE class a total of two models were fit. The first model represented the 

case where RASPBERRY BROWSE was present at time 1 (RASPBERRY BROWSE - 1 ). The 

parameters and the corresponding fit statistics are represented in Table B - 13 .  The second 

model represented the case where RASPBERRY BROWSE was not present at time 1 (RASPBERRY 

BROWSE - 0). The parameters and the corresponding fit statistics are represented in Table B - 14. 

For both models all the variables are significant based on the Wald chi-square test at level 

a=0.05. For the RASPBERRY BROWSE - 1 the value for the Hosmer Lerneshow statistics is 

13 .0283 (p-values of 0.1 1 09 with 8 degrees of freedom). For the RASPBERRY BROWSE - 0 

model the value for the Hosrner Lerneshow statistic is 3.9777 (p-values of 0.8591 with 8 degrees 

of freedom). These p-values are large, exceeding the a.=0.05 level so there is no evidence 

showing a disagreement between the predicted and observed values. The models are statistically 

well-fitted. The areas under the ROC curves are .75 and .76 respectively, suggesting that they 

discriminate moderately weil. 
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BLUEBERRY BROWSE 

For the BLUEBERRY BROWSE class a total of two models were fit. The first model represented the 

case where BLUEBERRY BROWSE was present at time 1 (BLUEBERRY BROWSE - 1) .  The 

parameters and the corresponding fit statistics are represented in Table B - 15 .  The second 

model represented the case where BLUEBERRY BROWSE was not present at time 1 (BLUEBERRY 

BROWSE - 0). The parameters and the corresponding fit statistics are represented in Table B - 1 6. 

For both models all the variables are significant based on the Wald chi-square test at level 

a=0.05. For the BLUEBERRY BROWSE - 1 the value for the Hosmer Lerneshow statistics is 

1 3.0757 (p-values of 0.1093 with 8 degrees of freedom). For the BLUEBERRY BROWSE - 0 model 

the value for the Hosmer Lerneshow statistic is 15 .8413 (p-values of 0.0447 with 8 degrees of 

freedom). These p-values equal or exceed the a.=0.05 level so there is no strong evidence 

showing a disagreement between the predicted and observed values. The models are statistically 

well-fitted. The areas under the ROC curves are .80 and .77 respectively, suggesting that they 

discriminate moderately weiL 

ERICA BROWSE 

For the ERICA BROWSE class a total oftwo models were fit. The first model represented the case 

where ERICA BROWSE was present at time 1 (ERICA BROWSE - 1 ) . The parameters and the 

corresponding fit statistics are represented in Table B - 1 7. The second model represented the 

case where ERICA BROWSE was not present at time 1 (ERICA BROWSE - 0). The parameters and 

the corresponding fit statistics are represented in Table B - 1 8. For both models all the variables 

are significant based on the Wald chi-square test at level a=0.05. For the ERICA BROWSE - 1 the 

value for the Hosmer Lerneshow statistics is 8 . 1 603 (p-values of 0.4 1 80 with 8 degrees of 

freedom). For the ERICA BROWSE - 0 model the value for the Hosmer Lerneshow statistic is 

6.6203 (p-values of 0.578 1 with 8 degrees of freedom). These p-values are large, far exceeding 

the a=0.05 level so there is no strong evidence showing a disagreement between the predicted 

and observed values. The models are statistically well-fitted. The areas under the ROC curves 

are . 78 and . 79 respectively, suggesting that they discriminate moderately well. 
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HERB BROWSE 

For the HERB BROWSE class a total of two models were fit. The first model represented the case 

where HERB BROWSE was present at time 1 (HERB BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table B - 19. The second model represented the 

case where HERB BROWSE was not present at time 1 (HERB BROWSE - 0). The parameters and the 

corresponding fit statistics are represented in Table B - 20. For both models all the variables are 

significant based on the Wald chi-square test at Ievel a.=0.05 . For the HERB BROWSE - 1 the 

value for the Hosmer Lerneshow statistics is 6.6203 (p-values of 0.5781 with 8 degrees of 

freedom). For the HERB BROWSE - 0 model the value for the Hosmer Lerneshow statistic is 

13.7294 (p-values of 0.0891 with 8 degrees of freedom). These p-values exceed the a=0.05 Ievel 

so there is no evidence showing a disagreement between the predicted and observed values. The 

models are statistically well-fitted. The areas under the ROC curves are .79 and .70 

respectively, suggesting that they discriminate moderately weil. 

FERN BROWSE 

For the FERN BROWSE class a total of two models were fit. The first model represented the case 

where FERN BROWSE was present at time 1 (FERN BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table B - 2 1 .  The second model represented the 

case where FERN BROWSE was not present at time 1 (FERN BROWSE - 0). The parameters and the 

corresponding fit statistics are represented in Table B - 22. For both models all the variables are 

significant based on the Wald chi-square test at Ievel a=0.05. For the FERN BROWSE - 1 the 

value for the Hosmer Lerneshow statistics is 7.651 7  (p-values of 0.4682 with 8 degrees of 

freedom). For the FERN BROWSE - 0 model the value for the Hosmer Lerneshow statistic is 

9.4160 (p-values of 0.3084 with 8 degrees of freedom). These p-values are large, far exceeding 

the a.=0.05 level so there is no strong evidence showing a disagreement between the predicted 

and observed values. The models are statistically well-fitted. The areas under the ROC curves 

are . 73 and . 72 respectively, suggesting that they discriminate moderately well. 

GRASS BROWSE 

For the GRASS BROWSE class a total oftwo models were fit. The first model represented the case 

where GRASS BROWSE was present at time 1 (GRASS BROWSE - 1). The parameters and the 

corresponding fit statistics are represented in Table B - 23. The second model represented the 
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case where GRASS BROWSE was not present at time 1 (GRASS BROWSE - 0). The parameters and 

the corresponding fit statistics are represented in Table B - 24. For both models all the variables 

are significant based on the Wald chi-square test at level a=0.05. For the GRASS BROWSE - 1 the 

value for the Hosmer Lerneshow statistics is 5 . 1275 (p-values of 0.7439 with 8 degrees of 

:freedom). For the GRASS BROWSE - 0 model the value for the Hosmer Lerneshow statistic is 

10.2307 (p-values of 0.2492 with 8 degrees of:freedom). These p-values are large, far exceeding 

the a=O.OS level so there is no strong evidence showing a disagreement between the predicted 

and observed values. The models are statistically well-fitted. The areas under the ROC curves 

are .80 and .67 respectively, suggesting that the GRASS BROWSE - 1 class discriminates well 

and the GRASS BROWSE - 0 discriminates poorly. 

4.2 Logarithmic Models 

The logarithmic models work as the second step in the two step modeHing process. The first step 

was to predict the probability ofthe given response variable being present or absent in the future. 

If the logistic model determined that a given response variable would be present at time 2, then a 

logarithmic model was needed to estimate in what quantity. For all the logarithmic models, the 

input datasets were the correctly classified observations of the matehing logistic model. 

Twenty eight models were fit to quantify the different response variables needed to predict the 

HSI parameters. The models can be divided into two categories, those estimating the percent 

share of the future growth classes and those estimating the percent share of the wildlife browse 

classes. Appendix C presents the tables containing the important parameters that are said to 

contribute in the prediction of the response variable, their associated estimated coefficient, their 

standard error and their probability for the t-statistic. Below each table is their estimated 

coefficient of multiple determination (R2) and the number of observations used to fit the model. 

Example Tables are presented in the text for CONIFER BROWSE. Note, these example tables do 

not appear as the first example but rather maintain the original ordering. CONIFER BROWSE was 

selected as an example because it represented both the forest and wildlife disciplines. The fit 

statistics are summarised in Table 4-5. 
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4.2. 1 Growth Classes 

REGEN I 

For REGEN I only one model was fit. The model represented the case where REGEN I was present 

at time 1 with trees in the overstory (REGEN I - 1 with trees). The parameters and the 

corresponding fit statistics are represented in Table C - 1 .  For the model all variables are 

significant based on the t-statistic at a a=0.05 level. For the REGEN I - 1 with trees model the R2 

= .54. 

For the REGEN I - 1 no trees case, no sound model could be fit. Therefore for this case, in 

application, if the logistic model predicts that REGEN I will stay, the percent share of REGEN I 

from time 1 will represent the percent share of REGEN I at time 2. 

For the REGEN I - 0 trees case, no sound model could be fit. Therefore for this case, in 

application, if the logistic model predicts that REGEN I will encroach, the average percent share 

ofREGEN I from time 2 which is 6/10 or 60% will represent the percent share of REGEN I at time 

2. 

REGEN il 

For REGEN II a total of 5 models were fit. The first model represented the case where REGEN II 
was present at time 1 with trees in the overstory (REGEN II - 1 with trees). The parameters and 

the corresponding fit statistics are represented in Table C - 2 . 

The second model represented the case where REGEN II was present at time 1 and there were no 

trees in the overstory (REGEN II - 1 with no trees). The parameters and the corresponding fit 

statistics are represented in Table C - 3 .  The third model represented the case where REGEN II 
was not present at time 1 with trees in the overstory (REGEN II - 0 with trees). The parameters 

and the corresponding fit statistics are represented in Table C - 4. In all the models, all the 

variables are significant based on the t-test at a a=0.05 level. The respective R2 values are .53, 

.57 and .77. 
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For the REGEN II - 0 no trees case, no sound model could be fit. Therefore for this case, in 

application, if the logistic model predicts that REGEN II will be present at time 2, two choices are 

available to assign the quantity. If there is REGEN I at time 1 ,  the percent share of REGEN I at 

time 1 will be used for the REGEN II at time 2. F or this case, it was found that in almost all cases, 

the percent share ofREGEN II at time two was the same as the percent share of REGEN I at time 1 .  

If there i s  no REGEN I at time 1 ,  a quantity o f  3/10 or 30% will b e  assigned. This i s  the average 

quantity or REGEN II at time 2, for the records in the database that represent this case. 

Two additional quantitative models were fit, the REGEN II - larch and REGEN II - broadleaved. 

The parameters and the corresponding fit statistics are represented in Table C - 5 and Table C - 6 

respectively. In the two models, all the variables are significant based on the t-test at a a=0.05 

level. The respective R2 values are .71 and .68. 

4.2.2 Wildlife Browse Classes 

No BRowsE 

For the No BROWSE class a total of two models were fit. The first model represented the case 

where No BROWSE was present at time 1 (No BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table C - 7. The second model represented the 

case where No BROWSE was not present at time 1 (No BROWSE - 0). The parameters and the 

corresponding fit statistics are represented in Table C - 8. For both models all the variables are 

significant based on the t-test at a a=0.05 level. The respective R2 values are .69 and .63 . 

CONIFER BROWSE 

For the CONIFER BROWSE class a total of two models were fit. The first model represented the 

case where CONIFER BROWSE was present at time 1 (CONIFER BROWSE - 1 ). The parameters and 

the corresponding fit statistics are represented in Table 4-3. The second model represented the 

case where CONIFER BROWSE was not present at time 1 (CONIFER BROWSE - 0). The parameters 

and the corresponding fit statistics are represented in Table 4-4. For both models all the 

variables are significant based on the t-test at a a=0.05 Ievel. The respective R2 values are .61 

and .49 . 
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Table 4-3: Logarithmic regression for Conifer Browse - 1. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle 4-3: Logarithmische Regression fur Nadelbäume - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fur das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheilsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 3.20214 0.08174 <.0001 

SQRT(A_NDSH_TJ) Conifer Browse 0.50580 0.0 1781 <.0001 

SQRT(A_NOSH_Tl) No Browse -0.21965 0.01 143 <.0001 

INTVAL Interval Value -0.50077 0.01 243 <.0001 

STDJ_T2 Norway Spruce -0. 14468 0.01 327 <.0001 

GZDJO Growth Zone 1 0  -0.05683 0.02233 0.0 1 10 

GZD12, 1 7  Growth Zone 1 2  or 0. 1 0467 0.02064 <.0001 17 

GZDI8 Growth Zone 1 8  0.17294 0.02286 <.0001 

SCD3 Soil Group 3 0.04727 0.02197 0.03 15  

SCD4, 1 7,18 Soil Group 4, 17  or 0.16877 0.01414 <.0001 1 8  

SCD6 Soil Group 6 0.33945 0.04282 <.0001 

SCD19 Soil Group 19 0.092 1 1  0.02573 0.0003 

GVDJ Shade Herb Type -0.23746 0.0261 6  <.0001 

C_BA Change in Basal -0.00678 0.00072830 <.0001 
Area 

JUNGIISH_Tl Regen il -0.02779 0.00170 <.0001 

30VERSH_T2 Sum of Overstory -0.03581 0.00193 <.0001 
Growth Classes 

=.61 
n = 4323 

3 OVERSH_T2 = STANGSH_T2 + BHISH_T2 + BHIISH_T2 
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Table 4-4: Logarithmic regression for Conifer Browse - 0. The table presents the mode1 parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the nurnber of 
observations used to fit the model. 
Tabelle 4-4: Logarithmische Regression fiir Nadelbäume - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter Parameter Parameter Estimate Standard Error Pr > Jtl Description 

INTERCEPT Intercept 0.20675 0.03 161  <.0001 

SQRT(A_NOSH_Tl) No Browse -0. 1 1 839 0.00358 <.0001 

ELEV Elevation 0.00715 0.00069470 <.0001 

INTVAL Interval Value 0.06555 0.00507 <.0001 

GZD11,12 Growth Zone 11 or 
0.06062 0.00928 <.0001 

12 

GZD18 Growth Zone 18 0.22879 0.01241  <.0001 

GZD20 Growth Zone 20 0.06715 0.0 1 121  <.0001 

STDO T2 No Trees in Angle 
0.48052 0.01366 <.0001 Count 

GVDJ Shade Herb Types -0.09340 0.00678 <.0001 

Sparse Moss, 

G VD6, 16,18 Pasture Forest 
0.10974 0.00688 <.0001 

Types or Seep 
Vegetation Types 

GVDJO Ca/luna Type 0.24954 0.07897 0.0016 

JUNGIISH _Tl Regen II -0.01 148 0.00 1 1 9  <.0001 

40VERSH_T2 Surn ofOverstory 
-0.02635 0.00128 <.0001 Growth Classes 

=.49 
n = 7893 

DECIDUOUS BROWSE 

For the DEcrnuous BROWSE class a total of two models were fit. The first model represented the 

case where DECIDUOUS BROWSE was present at time 1 (DECIDUOUS BROWSE - 1 ). The 

parameters and the corresponding fit statistics are represented in Table C - 9 .  The second model 

represented the case where DEcrnuous BROWSE was not present at time 1 {DECIDuous BROWSE 

- 0). The parameters and the corresponding fit statistics are represented in Table C - 1 0. For both 

models all the variables are significant based on the t-test at a a=0.05 level. The respective R1 

values are .65 and .50. 

4 OVERSH_T2 = STANGSH_T2 + BHISH_T2 + BHIISH_T2 + STARKSH_T2 
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SHRUB BROWSE 
For the SHRUB BROWSE class a total of two models were fit. The first model represented the case 

where SHRUB BROWSE was present at time 1 (SHRUB BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table C - 1 1 . The second model represented the 

case where SHRUB BROWSE was not present at time 1 (SHRUB BROWSE - 0). The parameters and 

the corresponding fit statistics are represented in Table C - 12.  For both models all the variables 

are significant based on the t-test at a a=0.05 level. The respective R2 values are .67 and .38 . 

RASPBERRY BROWSE 

For the RASPBERRY BROWSE class a total of two models were fit. The first model represented the 

case where RASPBERRY BROWSE was present at time 1 (RASPBERRY BROWSE - 1) .  The 

parameters and the corresponding fit statistics are represented in Table C - 13 .  The second 

model represented the case where RASPBERRY BROWSE was not present at time 1 (RASPBERRY 

BROWSE - 0). The parameters and the corresponding fit statistics are represented in Table C - 14. 

For both models all the variables are significant based on the t-test at a a=0.05 level. The 

respective R2 values are .69 and .41 . 

BLUEBERRY BROWSE 
For the BLUEBERRY BROWSE class a total of two models were fit. The first model represented the 

case where BLUEBERRY BROWSE was present at time 1 (BLUEBERRY BROWSE - 1) .  The 

parameters and the corresponding fit statistics are represented in Table C - 1 5 .  The second 

model represented the case where BLUEBERRY BROWSE was not present at time 1 (BLUEBERRY 

BROWSE - 0). The parameters and the corresponding fit statistics are represented in Table C - 16 .  

For both models all the variables are significant based on the t-test at a a.=0.05 level. The 

respective R2 values are . 7 4 and .44. 

ERICA BROWSE 

For the ERICA BROWSE class only one model was fit. The model represented the case where 

ERICA BROWSE was present at time 1 (ERICA BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table C - 1 7. For the model all the variables are 

significant based on the t-test at a a=0.05 level. The respective R2 value is .80. 
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For the ERICA BROWSE - 0 case, no sound model could be fit. For this case, in application, if the 

logistic model predicts that ERICA will be present at time 2, a quantity of 2 or 20% will be 

assigned. This is the average quantity for the records in the database that represent this case. 

HERB BROWSE 
For the HERB BROWSE class a total of two models were fit. The first model represented the case 

where HERB BROWSE was present at time 1 (HERB BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table C - 1 8. The second model represented the 

case where HERB BROWSE was not present at time 1 (HERB BROWSE - 0). The parameters and the 

corresponding fit statistics are represented in Table C - 1 9. For both models all the variables are 

significant based on the t-test at a a.=0.05 Ievel. The respective R2 values are .61  and .58. 

FERN BROWSE 

For the FERN BROWSE class a total of two models were fit. The first model represented the case 

where FERN BROWSE was present at time 1 (FERN BROWSE - 1 ). The parameters and the 

corresponding fit statistics are represented in Table C - 20. The second model represented the 

case where FERN BROWSE was not present at time 1 (FERN BROWSE - 0). The parameters and the 

corresponding fit statistics are represented in Table C - 2 1 .  For both models all the variables are 

significant based on the t-test at a a.=0.05 level. The respective R2 values are .70 and .37 . 

GRASS BROWSE 

For the GRASS BROWSE class a total of two models were fit. The first model represented the case 

where GRASS BROWSE was present at time 1 (GRASS BROWSE - 1). The parameters and the 

corresponding fit statistics are represented in Table C - 22. The second model represented the 

case where GRASS BROWSE was not present at time 1 (GRASS BROWSE - 0). The parameters and 

the corresponding fit statistics are represented in Table C - 23 . For both models all the variables 

are significant based on the t-test at a a.=O.OS level. The respective R2 values are .70 and .53.  

4.3 Overall Performance 

For each model pair, where appropriate, the efficiency ofboth models according to the equation 

in the methods section (3.5) was determined. In Table 4-5 the calculated efficiency results along 

with a summary of the results for the individual logistic and logarithmic models are presented. In 
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Figure 4-1 ,  Figure 4-2, Figure 4-3, Figure 4-3, Figure 4-5, and Figure 4-6 the results of  the 

observed versus the predicted distributions for all the models are presented. 

Table 4-5: Summary ofthe logistic, logarithmic and total efficiency fit statistics for each ofthe plot descriptors 
modelled. For logistic models, the p-value for the Hosmer-Lemeshow test statistic ( calculated using an equal 
number of observations per group) and the area under the receiver operating characteristics curve are presented. For 
the logarithmic regression the coefficient of determination is presented. Total model performance is tested using the 
efficiency statistic. 

Tabelle 4-5: Übersicht über die logistische, logarithmische und gesamte Anpassungsgüte fiir alle modellierten 
Parameter. Für logistische Modelle werden die Irrtumswahrscheinlichkeit des Hosmer & und Lerneshow Tests (fiir 
Klassen gleicher Häufigkeit) und die Flächen unter der ,,Receiver Operating Characteristic" Kurve angegeben. Für 
die logarithmische Regression wird das Bestimmtheilsmaß angegeben. Die gesamte Anpassungsgüte wird durch die 
,,Efficiency statistic" characterisiert. 

Plot Descriptor Plot Descriptor Logistic Regression Logarithrnic Total 
Class Regression Efficiency 

p-value Area Under R2 EF 
Hosmer- ROC Curve 

Growth Class REGEN I - 1 TREES . 1 8  .76 .54 -.08 

REGEN I - 1 NO TREES .26 .77 N/A NIA 

REGEN II - 1 TREES .41 .76 .53 . 1 6  

REGEN Il - 1 NO TREES .45 .72 .57 . 1 3  

REGEN I I  - 0 TREES .93 .79 .77 .04 

REGEN II - 0 NO TREES . 1 3  .85 N/A NIA 

REGEN II - BROADLEAVED NIA N/A .71 N/A 

REGEN II - LARCH N/A N/A .68 N/A 

Wi!dlife No BRowsE - 1  .68 .83 .69 .34 

NO BROWSE - 0  . 1 2  .73 .63 . 1 6  

CONIFER BROWSE - 1 .62 .74 .61  . 13  

CONIFER BROWSE - 0 . 1 5  .73 .49 .07 

DECIDUOUS BROWSE - 1 .60 .70 .65 .08 

DECIDUOUS BROWSE - 0 . 9 1  .78 .50 -.07 

SHRUB BROWSE- 1 .66 .71  .67 . 1 2  

SHRUB BROWSE - 0 .08 .80 .38 0 

RASPBERRY BROWSE - 1 . 1 1  .75 .69 .25 

RASPBERRY BROWSE - 0 .86 .76 . 4 1  - . 1 0  

BLUEBERRY BROWSE - 1 . 1 1  .80 .74 .47 

BLUEBERRY BROWSE - 0 .05 .77 .44 -.09 

ERJCA BROWSE- 1 .42 .78 .80 .43 

ERICA BROWSE - 0 .42 .79 N/A N/A 

HERB BROWSE - 1 .58 .79 .61 .27 

HERB BROWSE - 0 .09 .70 .58 -. 1 0  

FERN BROWSE - 1 .47 .73 .70 . 1 0  

FERN BROWSE- 0 .3 1 .72 .37 -.07 

GRASS BROWSE - 1 .75 .80 .70 .32 

GRASS BROWSE - 0 .25 .67 .53 -.07 
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Figure 4-1 :  The predicted versus the observed distributions, for the cutoff probabilities defined by the probability where the predicted distribution matches the a priori 
probability (Priori Prob), where sensitivity and specificity, both tagether are maximised (Sens by Spec) and where maximum discrimination is obtained (Max Discrim) 
for the Regen I and Regen II growth classes. 

Abbildung 4-1 :  Verteilung der geschätzten Werte über den beobachteten Werten für einen Schwellenwert, bei dem (i) die Verteilung der geschätzten Werte der a priori 
Wahrscheinlichkeit der beobachteten Werte entspricht, für (ii) maximale Sensitivität, (iii) maximale und Spezifität, und (iv) maximale Summe aus Spezifität und 
Sensitivitäe, und (v) maximale Diskriminierung zwischen den Gruppen, für die Wuchsklassen, Verjüngung I (REGEN I) und Verjüngung II (REGEN H). 
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Figure 4-2 : The predicted versus l:he observed distributions, for l:he cutoffprobabilities defmed by l:he probability where l:he predicted distribution matches l:he a priori 
probability (Priori Prob), where sensitivity and specificity, bol:h togel:her are maximised (Sens by Spec) and where maximum discrimination is obtained (Max Discrim) 
for l:he No Browse and Conifer Browse classes. 

Abbildung 4-2: Verteilung der geschätzten Werte über den beobachteten Werten fiir einen Schwellenwert, bei dem (i) die Verteilung der geschätzten Werte der a priori 
Wahrscheinlichkeit der beobachteten Werte entspricht, fiir (ii) maximale Sensitivität, (iii) maximale und Spezifität, und (iv) maximale Summe aus Spezifität und 
Sensitivitäe, und (v) maximale Dislcriminierung zwischen den Gruppen, fiir die Wildäsungtypen Keine Äsung und Nadelbäume. 
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Figure 4-3 : The predicted versus the observed distributions, for the cutoffprobabilities defmed by the probability where the predicted distribution matches the a priori 
probability (Priori Prob), where sensitivity and specificity, both together are maximised (Sens by Spec) and where maximum discrimination is obtained (Max Discrim), 
for the Deciduous and Shrub Browse classes. 

Abbildung 4-3: Verteilung der geschätzten Werte über den beobachteten Werten fiir einen Schwellenwert, bei dem (i) die Verteilung der geschätzten Werte der a priori 
Wahrscheinlichkeit der beobachteten Werte entspricht, fiir (ii) maximale Sensitivität, (iii) maximale und Spezifität, und (iv) maximale Sunune aus Spezifität und 
Sensitivitäe, und (v) maximale Diskriminierung zwischen den Gruppen, , fiir die Wildäsungtypen Laubbäume und Sträucher. 
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Figure 4-4: The predicted versus the observed distributions, for the cutoff probabilities defined by the probability where the predicted distribution matches the a priori 
probability (Priori Prob), where sensitivity and specificity, both together are maximised (Sens by Spec) and where maximum discrimination is obtained (Max Discrim), 
for the Raspberry and Blueberry Browse classes. 

Abbildung 4-4: Verteilung der geschätzten Werte über den beobachteten Werten fiir einen Schwellenwert, bei dem (i) die Verteilung der geschätzten Werte der a priori 
Wahrscheinlichkeit der beobachteten Werte entspricht, fiir (ii) maximale Sensitivität, (iii) maximale und Spezifität, und (iv) maximale Summe aus Spezifität und 
Sensitivitäe, und (v) maximale Diskriminierung zwischen den Gruppen, fiir die Wildäsungtypen Himbeere und Heidelbeere. 
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Figure 4-5: The predicted versus the observed distributions, for the cutoffprobabilities defmed by the probability where the predicted distribution matches the a priori 
probability (Priori Prob), where sensitivity and specificity, both together are maxirnised (Sens by Spec) and where maximum discrirnination is obtained (Max Discrim), 
for the Erica and Herb Bowse classes. 

Abbildung 4-5: Verteilung der geschätzten Werte über den beobachteten Werten für einen Schwellenwert, bei dem (i) die Verteilung der geschätzten Werte der a priori 
Wahrscheinlichkeit der beobachteten Werte entspricht, für (ii) maximale Sensitivität, (iii) maximale und Spezifität, und (iv) maximale Sunnne aus Spezifität und 
Sensitivitäe, und (v) maximale Diskriminierung zwischen den Gruppen, , für die Wildäsungtypen Erika und Kräuter. 
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Figure 4-6: The predicted versus the observed distributions, for the cutoff probabilities defmed by the probability where the predicted distribution matches the a priori 
probability (Priori Prob), where sensitivity and specificity, both tagether are maximised (Sens by Spec) and where maximum discrimination is obtained (Max Discrim), 
for the Fern and Grass Browse classes. 

Abbildung 4-6: Verteilung der geschätzten Werte über den beobachteten Werten fiir einen Schwellenwert, bei dem ( i) die Verteilung der geschätzten Werte der a priori 
Wahrscheinlichkeit der beobachteten Werte entspricht, fiir (ii) maximale Sensitivität, (iii) maximale und Spezifitiit, und (iv) maximale Surume aus Spezifitiit und 
Sensitivitäe, und (v) maximale Diskriminierung zwischen den Gruppen, fiir die Wildäsungtypen Farne und Gräser. 
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5 DISCUSSION 

The prediction of future probabilities and quantities of the growth classes and wildlife browse 

classes are based on two separate assumptions conceming the dynamics over time. The growth 

classes represent transitional stages of stand succession. One would expect a stand to progress 

from a clearing (after a clearcut) or to release (after a thinning) to REGEN I to REGEN II to POLE 

and so on. Wildlife browse classes on the other hand, do not grow out of a class, with the 

exception of CoNIFER and DEcmuous BROWSE. If they are present on a site at time 1 ,  they can 

only change their state, either by increasing or decreasing their prominence or by disappearing 

entirely. If they are not on a site at time 1 ,  they can either encroach onto the site or continue to 

not be on the site. 

What is consistent between both growth classes and wildlife browse classes is the significance of 

their presence/absence at time 1 .  The biologieallman caused processes which dictate a growth 

class or wildlife browse class disappearing from a site, when it is already present, can be 

significantly different than those that stimulate its encroachment onto a site. What was proposed 

at the beginning of this study was to take advantage ofthe status ofthe response variable at time 

1 and to utilise stand information from both time 1 and time 2. 

The status of the response variable at time l, represented by its percent share, was tested in all 

the models. Because the models were split into "present at time 1" ( - 1 case) and "not present at 

time 1" ( - 0 case ), the status at time 1 was only applicable in the "present at time 1" case. As 

expected, of the 27 models developed for the "present at time 1" case (both logistic and 

logarithmic, excluding the larch and broadleaved models), 23 included the state of the response 

variable at time 1 .  This makes intuitive sense since the 5/6 year difference between 

remeasurements is not long enough for drastic changes in stand composition, such that one 

would not expect species to entirely disappear in this short time frame. At the beginning of the 

study, it was posed that status of the response variable at time 1 was important in predicting the 

time 2 status. Its inclusion in so many models supports this. Furthermore, in all the cases where 

it did appear in the model, the variable was dominant in the model. 
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The cases where the status ofthe response variable at time 1 was not important, was surprisingly, 

in the logistic REGEN I, with and without trees and the CONIFEROUS BROWSE and ERICA BROWSE 

classes. In the case of REGEN I with and without trees, the absence of the status at time 1 in the 

models, shows that it is not the abundance of REGEN I at time 1 that dictates whether it will be 

there at time 2, but rather the site and stand conditions. In the "with trees" case, this suggests that 

in terms of competition, intra-specific competition is not as an important factor as competition 

from above. For this case the notable variables are stand structure, quadratic mean diameter and 

the density of the pole stand above. In the "without trees" case the important variables are 

elevation, relief, the dummy variable for spruce and the percent area of No BROWSE. The No 
BROWSE variable is an interesting and important variable in this and in many other models. No 
BROWSE describes, how much of the region between the forest floor and 1 .5 meters, has no 

browsable species. For there to be No BROWSE, the density of the stand above must be high 

enough to limit the amount of light reaching the forest floor. This would suggest that the No 
BROWSE class is a measure of overstory density. However there are two cases where this would 

not apply, when a forested area has been recently clear cut and encroachment of vegetation has 

not yet occurred, or when the height of the regeneration is low offering little browse. In both of 

these cases this situation would only last for a short period. In the case of the REGEN I model 

with no trees, the fact that the No BROWSE variable was in the model before the percent share of 

REGEN I at time 1 ,  indicates that the No BROWSE variable measures the height of the REGEN I at 

time I. This height dictates whether or not REGEN I will be present or not at time 2. 

The role of the No BROWSE class within all the models is very evident. It is present in 29 of the 

49 models. There are 3 definite roles that No BROWSE played in the models. The most obvious 

observation is that the No BROWSE variable has entered all of the models that the response 

variable is "not present at time 1" ( - 0 case), with the exception of BLUEBERRY and the No 
BROWSE case. Its coefficient was always negative. This indicates clearly that for a species to 

encroach onto a site, the canopy above must be open enough to let light reach the forest floor and 

that the No BROWSE variable is a measure of this density. The second observation is that for the 

BLUEBERRY, ERICA, HERB, FERN and GRASS BROWSE classes, when the response variable was 

present at time 1 (- 1 case ), the No BROWSE variable was never in the models. This suggests that 

in these cases, the percent share of the response variable at time 1 ,  indirectly represented the 

density of the forest stand above. The third observation was, that this was not true for the 
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CONIFER, DECIDUOUS, SHRUB and the RASPBERRY BROWSE classes. In these cases both the 

status ofthe response variable at time 1 and the No BROWSE variable were present in the models, 

indicating that both variables were offering different information. The concem was then, were 

these variables independent? In the logarithmic regressions, the two variables were considered 

independent based on their variance inflation factors. In logistic regression there is no simple 

method to test for independence, so the independence demonstrated in the logarithmic models 

was assumed to apply to the logistic models. This is not an unreasonable assumption since both 

modeHing strategies are a form ofregression. 

The other objective of this study was to use overstory information from both time 1 and time 2. 

This desire was based on the fact that changes, such as harvesting and thinning are not 

represented when only data from time 1 or time 2 are used. Knowing that a growth model, in 

application, can provide useful information of the future forest stand, including species 

composition, density and vertical structure; made it possible to test whether information from 

both times was truly useful. In order to do this the same variables from time 1 and time 2 were 

tested. At the beginning of the modelling process, using stepwise regression, it was seen that 

variables such as stand type (species composition), stand structure and stand density from time 2 

entered the models before or at the same time as the same variables from time 1. This meant that 

information from time 2 was as much as or more useful in predicting the time 2 response 

variables, when compared to the time 1 variable. Most importantly this meant that the models 

would be sensitive to changes in stand structure. Practically, the models could be applied in areas 

where significant changes in stands where being actively pursued, like in the case of restoration. 

Models developed using only data from time 1 ,  would lack the ability to react to these changes. 

Because ofthe strength ofthe time 2 overstory structure variables in the testing stage, in the final 

model fitting stages, they were chosen over time 1 variables. 

Reviewing the final logistic and logarithmic models, several Observations could be made about 

the variables used from time 2. The most obvious variable was the change in basal area (c_BA) 

which appeared in 23 ofthe 49 models (excluding the larch and broadleaved models). The c_BA 

variable is the basal area from time 2 minus the basal area from time 1 .  This is a variable that 

uses both time 1 and time 2 data. A positive basal area that is near zero represents normal stand 

growth. A large positive basal area is most likely caused by using the angle count method as 
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discussed in the methods section. Ifthe C_BA variable is negative, it suggests stem removaL The 

larger the negative value, the more stems removed. The cases represented by the c_BA variable 

was what was expected to be the case and hoped for. The desire was for the models to respond to 

marked changes in the stand structure, assuming that in these cases, the understory vegetation 

changes would be the greatest. In the models developed, the c_BA variable coefficient is both 

positive and negative depending on whether harvesting and thinning of a stand favours the 

response variable or not. In section ( 5 .2) which discusses the interpretation of the coefficients, 

the interpretation ofthe c_BA variable for each model is presented. 

Although the c_BA variable was a dominant variable, there are other variables from time 2 that 

occur in place of or together with the C_BA variable. These are the change in quadratic mean 

diameter (c_QMD), the quadratic mean diameter at time 2 (QMD_T2) and the crown competition 

factor at time 2 (cCF_T2). In 32 out of the 46 models (those with trees, excluding the larch and 

broadleaved models), at least one of these variables c_BA, C_QMD, QMD_T2, or CCF_T2 are in the 

models. 

Other variables representing time 2 include, the percent share of the overstory growth classes 

(STANGSH_T2, BHISH_T2, BHIISH_T2 and STARKSH_T2), the species composition (STDO_T2 - STD4l_T2) and 

the stand structure (ssDJ_T2, SSD2_T2 and SSD3_T2). Their significance is that they represent the 

stand structure at time 2, after all changes, including normal growth, have already taken place. 

5.1 Model Performance 

The evaluation of model performance is ideally done on an independent dataset. Such a dataset 

was in the data collection phase at the time ofthis writing and in the future is expected to provide 

an excellent base for the evaluation of the models developed. In the absence of this dataset, there 

is still value in assessing the models' performance based on the data used. 

For the logistic models, these include the fit statistics from the Hosmer and Lerneshow test and 

the area under the receiver operating characteristics (ROC) curve. From Table 4-5 the p-values 

for the Hosmer and Lerneshow test statistic, c ,  calculated using the equal number of 

observations per group method, show that all the models meet the a.=0.05 level. This indicates 
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that there is no evidence to suggest that there is disagreement between the observed and 

predicted values. In most cases the p-values far exceed the threshold of a=0.05. 

The area under the ROC curve measures a logistic model's ability to discriminate. The important 

fact is that this measure is both independent of species prevalence and the decision threshold or 

cutoffprobability. Areas of 0.5 to 0.7 indicate poor discrimination, 0.7 to 0.8 indicate moderate 

discrimination, values from 0.8 to 0.9 indicate good discrimination and values higher than 0.9, 

indicate excellent discrimination. From Table 4-5 the majority of the ROC areas for the logistic 

models developed are above 0.7. The only exception is Grass - 0 with a ROC area of .67 which 

is slightly below 0.7. The results of the ROC curve areas suggest that all the models provide 

acceptable discrimination. 

For the logarithmic regression model, the most common measure of performance is the 

coefficient of multiple determination or R2• It measures the amount ofvariation that is explained 

by the regression. One should be reminded that the dataset used to fit the logarithrnic models 

comes from those observations which were correctly predicted by the matehing or paired logistic 

model. From Table 4-5 the R2 values vary from .37 to .80. As expected, the R2 values for the 

models representing the "not present at time 1" ( - 0 case) are all significantly lower than the 

"present at time 1" (- 1 case ). This is because the "not present at time 1 " (- 0) case, represents 

the "rest" of the data which is expected to be highly variable. Huisman et al. ( 1993), observed 

that in vegetation modelling, many species will show considerable variation around the observed 

response. In addition to this, the response variables in this study are only ocular estimates with a 

coarse measurement resolution (tenths). Because of this, the response variables are expected to 

possess notable measurement or classification error. For these reasons, the R2 values obtained 

from the models developed appear to be reasonable. 

Although both the logistic and the logarithmic models show reasonable fit statistics, they are 

most likely not independent, since the data used to develop the logarithrnic models are the 

" correctly predicted " observations from the logistic model. The support for using this 

methodology is provided in section (3.4). The lack of independence of the two models suggests 

that each model pair must be evaluated together. To do this, the efficiency statistic (EF) was 

used, which compares the predicted quantities to the observed. An EF value of 0 suggests that 



70 

the model is no better than the average, an EF value nearing 1 suggests an efficient model, a 

negative EF value suggests that the model is biased. From Table 4-5, the EF values vary 

considerably. Seven are negative with values ranging from 0 to -0. 1 suggesting that they are 

marginally biased. Of these, six are the "not present at time 1" (- 0) case. The remainder of the 

models have positive EF values, ranging from 0 to 0.47 which suggests that they are better than 

the mean. 

The presentation of the EF statistics was done to provide the reader with some idea of overall 

performance. However, there are several factors that are important to recognise. Firstly, this 

evaluation was not done on an independent dataset, so the results should be better than on an 

independent dataset. Secondly, the reader must acknowledge that the predictions are based on 

two models, which in both cases have notable error. Thirdly, the EF values compare the 

performance of observed versus predicted outcomes at a subplot level. This means that a 

predicted value of 30% for blueberry at time 2 is considered different than an observed value of 

20%. In reality one would have to question whether this is a significant difference. Reviewing 

the data collection procedures for the development of the HSI models, the BEGG and BEVJ HSI 

parameters for example, are measured in 7 classes; 0 (0%), 1{ - 5%), 2(6-1 0%), 3(1 1-20%), 

4(21 -30%), 5(3 1-50%), 6(51 -75%) and 7(76-1 00%). Other HSI parameters were measured in 

similar classes. The point is, that the EF measure is a precision measure and in this case is far 

more stringent than is required in terms of application. Notably, the classes listed above are not 

evenly distributed but rather show an emphasis in the lower classes. Another aspect which relates 

to applicability, deals with the spatial arrangement of the vegetation. Referring back to the 

blueberry example above, the comparison of observed versus predicted is at a subplot level, the 

"exact" same subplot. In wildlife management, management is on large areas for roe deer, larger 

than 1 00 ha according to Reimoser & Zandl ( 1994). This suggests that having the exact observed 

versus predicted values spatially, is of less importance than correctly predicting the average over 

the entire management area. Relating this to forestry, when modeHing mortality, it is not as  

important to  know which tree dies, but how many trees within each size class in the stand die. 

This further makes the EF measure over stringent. 

The concept of management oflarge areas then suggests that a reasonable method to evaluate the 

performance of a model, is to use the frequency distribution of each percent share class. If the 
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predicted distribution i s  similar to the observed, regardless o f  the spatial arrangement, a good 

portion of the requirement for wildlife management is met. This is not intended to insinuate that 

the spatial arrangement is not important, it is intended to point out that obtaining the correct 

frequency distribution is a requirement. To obtain the frequency distribution ofthe percent share 

classes, using a two model system, there is still the requirement of choosing a cutoff value in 

logistic regression. This cutoffvalue ultimately determines which observations will be present at 

time 2, thus requiring quantification. In the model development stage, the a priori probability 

was chosen as the cutoff point to select the " correctly predicted " observations needed to 

construct the input dataset for the logarithmic model development. The choice to use the a priori 

probability again in the application stage is challenged by two other theoretically feasible cutoff 

points: 1) at the probability where the sensitivity and the specificity together, are both 

maximised; and 2) at the probability where the maximum discrimination is obtained. The 

answer was not intuitively clear. The importance of obtaining the correct frequency distribution 

warranted that this decision be made carefully. To make the choice, outcomes ofthe two model 

system using the 3 different logistic regression cutoff points were predicted. The frequency 

distribution for each of the 3 cases was then plotted against the observed frequency distribution. 

After a preliminary review of the plots, it was clear that the a priori probability provided a very 

poor distribution between observed and predicted observations and was therefore not 

appropriate. It was more intuitive to choose a cutoff value that represented the a priori 

probability within the predicted data (where the ratio, between those observations predicted to be 

present in the future over the total number of observations, was the same as the a priori 

probability). This revised definition of a priori probability became the new cutoff value tested. 

The results for each model pair are presented in Figure 4-1 ,  Figure 4-2, Figure 4-3 , Figure 4-4, 

Figure 4-5 and Figure 4-6. For the browse classes, it was immediately clear that the redefined a 

priori probability provided the nearest predicted frequency distribution to the observed frequency 

distribution. The zero class was predicted very closely to the observed in all cases. This is 

expected since, the redefined a priori probability defines explicitly the number of zeros and ones. 

The problems appeared to be with the 1 and 2 classes. However as discussed earlier, the 

difference between 10% and 20% is not critical. The plots clearly show that the sensitivity by 

the specificity cutoff and the maximum discrimination, both are very unpredictable especially in 

the first 3 percent share classes. From these plots it was clear that the "best" choice for the 

cutoff was the redefined a priori probability. This was a surprising result with an important 
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implication. In the literature, the pros and cons in the selection of different cutoff probabilities 

for logistic models is often discussed. Many authors suggest the use of the a priori probability as 

a cutoff value when modeHing vegetation, however in this study this was clearly not a good 

choice. For the browse classes, the redefined a priori probability was the best choice. 

The distributional results for the growth classes are not as clear as for the browse classes as seen 

in Figure 4-1 .  The zero class was predicted very closely to the observed for all the growth class 

cases. As with the browse classes, this is expected, since the a priori probability defines 

explicitly the number of zeros and ones. This is an important result. However, after this, the 

models have difficulty in matehing the observed distribution. In the REGEN I - 1 with trees and 

the REGEN II - 1 ,  with and without trees, the most obvious departure from the observed is in the 

last class. In these three cases, the predictions underestimate the observed. This is not believed 

to be a problern with the logistic model, since the number of O's and 1 's are correctly predicted, 

but rather a problern with the logarithmic model. This is evident when one looks at the ROC 

values and the R2 values for the growth classes. The ROC values are consistent with the other 

models developed. However the R2 values appear lower than the other R2 values for the present 

at time 1 ( - 1 )  case. It appears that the model form chosen, has difficulty representing the curve 

form of the observed data. The significance of this depends on the purpose. Clearly in the 

REGEN II with trees case, the model over estimates in the 4 to 7 classes, then underestimates in 

the last class. Referring back to the classification scheme used in the wildlife classes, the 5 - 10  

range represents two classes ( 6 and 7). For application, the predictions are not far from what is 

needed. For other applications, this may or may not be acceptable. 

The statistical review of the models and an evaluation of the model performance is an important 

aspect of model acceptance, however the behaviour of the models is as or more important. To 

examine model behaviour the variables that make up the models must be examined and 

evaluated in terms oftheir respective coefficients. 

5.2 Interpretation of coefficients 

A model must be biologically plausible. Reviewing the variables that make up the model and 

their respective sign ( + or -), an evaluation of a models behaviour und er different conditions can 
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be made. This behaviour should be consistent with the known behaviour. Interestingly, both the 

logistic models and logarithmic models behave similarly, such that, when the same explanatory 

variables are present in both models, they possess the same behaviour represented by their 

respective sign of their coefficient ( + or - ). This is intuitively correct since any explanatory 

variable which favours presence, should also favour quantity. It is also expected that the logistic 

and logarithmic models would be very similar in which explanatory variables make up the 

models. Reviewing both the logistic and logarithmic models, this study found that when 

comparing the paired logistic and logarithmic models, an average of 7 variables are common to 

both models. There is an average of 1 additional variable unique to the logistic models and an 

average of 5 additional variables unique to the logarithmic models. This clearly shows that this 

study was less interested in fitting parsimonious logarithmic models. 

Although the interpretation of the coefficients may appear repetitive, it is quite the opposite. 

Firstly, the condition of the response variable at time 1, present or not present, differentiates 

between disappearing from a site versus encroaching onto a site. The factors that are important 

in these two instances can be quite different. Secondly, in the growth classes, the models are 

stratified into with trees and without trees. The processes which dictate the growth of REGEN I 

and REGEN II under a forest canopy versus no canopy, as discussed earlier are quite different. 

Finally, for the browse classes, each class has been developed within the inventory because of its 

unique properties. For these reasons, a brief review ofthe coefficients role in each ofthe models 

and perhaps their significance, when possible, is necessary. This review will be very useful to 

future users who, should then have a better understanding of the basis for the models. 

The interpretations that were made during the discussion ofthe models come from many sources, 

books, joumals, discussions with people and from plotting the response and explanatory 

variables spatially in ArcView. The interaction between the growth zones, soil types and 

vegetation types is well known. Through the plotting of the variables in ArcView, it was found 

that the modeHing process chose the variables that best represented the influence, but what that 

influence is, for certain, is difficult to determine. For example, in the BLUEBERRY - 1 case, if one 

compares the distribution of blueberry to the variables in the model, the growth zones, soil 

groups and vegetation types where blueberry does not exist, usually have negative coefficients 

suggesting that they will tend to disappear. In areas were blueberry is commonly found, the 
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coefficients are positive, as expected. Simple checks like these give much more merit to the 

model behaviour. 

Some of the important variables, such as the response variable at time 1 ,  the No BROWSE 

variable and the change in basal area (c_BA) have already been discussed. The remaining 

variables with the exception of interval value are best discussed on a model by model basis. The 

interval value variable (INTVAL), tests whether or not there is a significant difference between an 

interval period of 5 or 6, dictated by the two inventory remeasurement intervals. Interval value 

appeared in 40 out of the 49 models, all wildlife browse models except Fern - 0 (logistic and 

logarithmic) and in only two of the logistic growth class models, REGEN I - 1  no trees and in 

REGEN li - 0 no trees and only one logarithmic model, REGEN li - 1 with trees. When the 

response variable is "present at time 1 ", then INTVAL is always negative and always positive when 

"not present at time 1". This is as expected since interval values determines if a 1 year 

difference in measurement has an influence on change in status of the response variable. When 

we are predicting whether it will "stay" on a site, the Ionger the interval period, the more likely 

that change could occur, therefore it is negative. Similarly, if the response variable is not on the 

site at time 1 ,  the Ionger the interval period, the more likely change could occur, therefore it is 

positive. 

The following text discusses the significance and behaviour of the explanatory variables that are 

included in each ofthe models. 

5 .2. 1 Logistic Models 

5 .2. 1 . 1  Growth Classes 

REGEN I - 1 (with trees) 

ifREGEN I is present at time 1, what is the probability that REGEN I will be present at time 2, 

when an overstory exists. 

The positive coefficient for logarithm A_NOSH_TI suggests that when there are large areas with No 
BROWSE, that the age of the stand is very young and will not likely grow into REGEN II in a 5 
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year period. The positive coefficient for the grass browse class (A_GRSH_TI) shows that as the 

density of grass increases, the probability of REGEN I staying REGEN I increases. This is 

intuitively correct since grass is expected to compete with the regeneration. In growth zones 7 

(GZD7) and 10  (GZDIO) the positive coefficients are interpreted to reflect the management practice 

of planting conifer species in primarily deciduous (beech) forested areas. The high deciduous 

competition suppresses the growth of conifers. In growth zone 1 9  and 20 (GZDI9 and GZD20) the 

negative coefficients suggest that it is less likely for REGEN I to stay REGEN I compared to other 

growth zones. The positive coefficient for the vegetation moist herb type (GVD2) suggests that 

competition may be high er than in other vegetation types. If it is a one layer stand (ssDJ _T2) the 

negative coefficient shows that it is less likely to stay REGEN I. The positive coefficient for west 

aspect (Asn) suggests that west exposures have slower growth rates. The negative coefficient for 

the POLE (STANGSH_T2) suggests that there are cases where REGEN I will grow from REGEN I into a 

POLE stand. The change in quadratic mean diameter (C_QMD) coefficient has a positive 

coefficient. This suggests that if there is harvesting from above, the probability of REGEN I 

staying is lower when compared to a stand where there is good growth. 

REGEN I - 1 (no trees) 

.({REGEN I is present at time 1, what is the probability that REGEN I will be present at time 2, 

when there are no overstory trees. 

The positive coefficient for ELEV shows that as elevation increases, the probability for REGEN I to 

stay REGEN I increases due to a slower growth rate. The positive coefficient for logarithm 

A_NOSH_TI suggests that when there are large areas with No BROWSE, that the age of the stand is 

very young or very dense and will not likely grow into REGEN Il in a 5 year period. The negative 

coefficient of STDI_T2 shows that a spruce stand will be less likely to be present at time 2, 

compared to other species. This is correct since spruce has one of the highest juvenile growth 

rates. The negative coefficient for RLD3, RLD4 and RLD7 shows that in areas where water and 

nutrients pool (concave lower slopes, ditches and hollows), growth will be highest. The positive 

coefficient growth zones 9(GZD9), l O(GZDIO) and 12(GZDI2) is interpreted to reflect the 

management practice of planting conifer species in primarily deciduous (beech) forested areas. 

The high deciduous competition suppresses the growth of conifers. 
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REGEN II - 1 (with trees) 

.lfREGEN II is present at time 1, what is the probability that REGEN II will be present at time 2, 

when an overstory exists. 

The positive coefficient of ELEV indicates that as elevation increases, it is more likely that REGEN 

II will stay REGEN II. This is as expected, since growth will be slower as elevation increases. 

The negative coefficient of STDI_T2 shows that spruce regeneration grows faster than other 

species. The logarithm JUNGIISH_TI, SSDI_TI and an interaction term between SSDI_TJ and 

logarithm JUNGIISH_TI are interpreted together. In general, as JUNGIISH_TJ increases the probability 

of REGEN II being present at time 2 increases. This shows the competition effect as density 

increases. If it is a single layer stand, the probability to stay REGEN II decreases since there is no 

definite stand of competing overstory trees. The interaction term shows that at low densities the 

difference between multilayer stands and single layer stands is much greater than when densities 

are high. The variable A_NDSH_TJ in simple terms, represents conifer REGEN I. It has a positive 

coefficient which suggests that the more REGEN I present, the greater the chance that REGEN II 
will still be present at time 2. The negative coefficient for the change in quadratic mean diameter 

(c_QMD) can describe three general cases. When the C_QMD is positive, this suggests the stand 

has been thinned from below. When the C_QMD is negative, it suggest the stand has been 

harvested from above. When c_QMD is near zero, it represents normal growth. Thinning from 

below, when compared to a harvest, will result in the lowest probability for REGEN II being 

present at time 2 since, the REGEN II was what was removed during the low thinning. 

REGEN II - 1 (no trees) 

.lfREGEN li is present at time 1, what is the probability that REGEN II will be present at time 2, 

when there are no overstory trees. 

The positive coefficient of JUNGIISH_TI shows that as the percent share of REGEN II at time 1 

increases, the probability of REGEN II being present at time 2 increases. The positive coefficient 

of ELEV shows that as elevation increases, probability to stay increases. The negative coefficient 

for SSDI_T2 shows that a one layer stand will be less likely to remain REGEN II when compared to 

a two layer or multilayer stand. In the inventory, by convention, a stand can be REGEN I or 

REGEN II but not both. THE CONIFEROUS BROWSE (A_NDSH_TI) and DECIDUOUS BROWSE 
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(A_LASH_TI) for the most part represent REGEN I. The coefficients for both of these are positive, 

suggesting that as the percentage of REGEN I increases, the younger the REGEN II stand is. The 

younger it is, the less likely it is that it can grow out ofREGEN II into a POLE stand. 

REGEN II - 0 (with trees) 

.ifREGEN II is not present at time 1, what is the probability that REGEN II will be present at time 

2, when there are overstory trees. 

The positive coefficient of JUNGISH_TI shows that as the percent share of REGEN I increases, there 

is higher chance that REGEN II will be present at time 2. The negative coefficient of ELEV shows 

that as elevation increases, probability for REGEN II to encroach onto a site decreases. The 

negative coefficient of SSDJ_T2 shows that multilayer stands have a better chance of having 

REGEN II appear than a 1 layer stand. The coefficients for dystric cambisols (scD3) and spodi­

dystric cambisols (SCD4) are both positive. These two soil types are very common and are found 

throughout Austria. In relation to other soil types, it is expected that growth will be better on 

these soils, therefore the chance of encroachment of REGEN II should be higher. The negative 

coefficients for growth zones 7(GZD7), 9(GZD9) and l O(GZDIO) are interpreted to reflect the 

management practice of planting conifer species in primarily deciduous (beech) forested areas. 

The high deciduous competition suppresses the growth of conifers therefore they are unlikely to 

encroach onto a site. The negative coefficient of A_NOSH_TI suggests that when there are large 

areas with No BROWSE, the understory vegetation is either very young or low to the ground 

and/or the density of the canopy above is very high, suppressing the growth of ground 

vegetation. The positive coefficient for the STDO_T2 variable suggests that if there are no trees in 

the angle count at time 2. Therefore the canopy·is not dense providing more light to the forest 

floor. The positive lower slope relief (RLD3) coefficient shows that encroachment is highest 

where growth is best, for example where water and nutrients pool. 
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REGEN li - 0 (no trees) 

.lfREGEN II is not present at time 1, what is the probability that REGEN II will be present at time 

2, when there is an overstory. 

The negative coefficient of ELEV shows that as elevation increases, the probability for REGEN II to 

encroach onto a site decreases. The positive coefficient of JUNGISH_TI shows that as the percent 

share of REGEN I at time 1 increases, there is a higher chance that REGEN li will be present at 

time 2 .  The negative coefficient of No BROWSE (A_NOSH_TI) suggests that when there are large 

areas with "No BROWSE", the understory vegetation is either very young or low to the ground 

and/or the density of the canopy above is very high, suppressing the growth of ground 

vegetation. The positive coefficients for the lower slope relief (RLD3) and hollows (RLD7) shows 

that encroachment is highest where growth is best, for example where water and nutrients pool. 

The negative coefficient in growth zones 6(GZD6), 9(GZD9), l O(GZDIO) and 1 2(GZDI2) may reflect 

the management practice of planting conifer species in primarily deciduous (beech) forested 

areas. 

5.2. 1 .2 Wildlife browse Classes 

No BROWSE - 1 

.lfthere are areas with No BROWSE present at time 1, what is the probability that there will be 

areas with No BROWSE present at time 2. 

The positive coefficient of A_NOSH_TI indicates that with an increasing percent share of No 

BROWSE (areas completely void ofbrowsable vegetation) at time 1 ,  the probability of having No 

BROWSE at time 2 increases. The positive coefficients for REGEN li (JUNGIISH_TI) and POLE 

(STANGSH_T2) show that as the density of either of these two layers increases, the probability of 

No BROWSE increases. The STDO_T2 and CCF_T2 represent the stand density at time 2. The negative 

coefficient of STDO_T2 indicates that ifthere are no trees in the angle count, the stand is not dense, 

allowing sufficient light to reach the forest floor for vegetation to encroach. The positive 

coefficient for ccF_T2 suggests that as the CCF_T2 increases, the probability for No BROWSE 

increases. Both 1 layer stands (SSDI_T2) and mixed deciduous stands (STD4I_T2) have negative 

coefficients indicating that in these cases, the probability of No BROWSE is lower. The sparse 
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moss type ( GVD6) has a positive coefficient. This type is a !arge vegetation group represented 

mostly in coniferous regions. It is expected that coniferous regions would have less browse than 

when compared to deciduous types. The change in basal area (c_BA) variable has a positive 

coefficient suggesting that if a stand is harvested the probability for No BROWSE should be 

lower, since opening up ofthe canopy allows for more understory vegetation. 

No BRowsE - 0 

If there are no areas with No BROWSE present at time 1 (1 00% coverage by browsable 

vegetation), what is the probability that there will be areas with No BROWSE present at time 2. 

No BROWSE when No BROWSE is not present at time 1 ,  indicates that all the area available for 

understory vegetation is fully occupied. The elevation (ELEV) coefficient is negative indicating 

that as elevation increases, the probability ofNo BROWSE occurring, when one does not exist at 

time 1 ,  is lower. This is as expected since growth is slower at higher elevations, so change will 

occur much slower. The shade tolerant herb (GVDI), the moist herb (GVD2), the moderhumus in 

conifer stand (GVD4) and the sparse moss (GVD6) types all have positive coefficients indicating 

that in these vegetation types, more No BROWSE will be present at time 2 compared to other 

vegetation types. The square of OVERSH_T2 is a summation of the percent shares of. POLE 

(STANGSH_T2), MATURE I(BHISH_T2) and MATURE II(BHIISH_T2) squared. These variables along with 

REGEN I (JUNGIISH_TI) have positive coefficients showing that if an area is fully occupied, the 

probability ofhaving No BROWSE at time 2, will increase with the increase in the shares ofthese 

variables. In growth zone 15  (GZDI5) and 1 8  (GZDIB) the positive coefficients indicate that for 

some reason in these regions, areas ofNo BROWSE will appear more often than in other regions. 

In growth zone 9 (GZD9) the opposite is true. The negative coefficient of STDO_T2 indicates that if 

there are no trees in the angle count, the stand is not dense, allowing sufficient light to reach the 

forest floor for vegetation to encroach. Thus the probability for areas WITH No BROWSE to appear 

is lower. The positive coefficient for STDI_T2 indicates that if the stand type is pure spruce, the 

probability for areas ofNo BROWSE to appear is higher, since spruce will quickly grow out ofthe 

browsable region. This is the same for the square of ASUNGSH_TJ representing the sum of the 

CONIFER (A_NDSH_TI), DECIDUOUS (A_LASH_Tl) and SHRUB (A_STSH_Tl) BROWSE, squared. These 3 

types are tree and shrub types which will either grow out of the browsable region or become 

dense enough to prevent other browsable species to appear below, therefore the probability for 
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No BROWSE will increase. The variable GRAss BROWSE (A_GRSH_TI) has a negative coefficient 

which indicates that as the percent share of grass increases at time 1 ,  the probability of an area 

with No BROWSE forming is lower. This is intuitively correct since grass will not grow out of the 

browsable region and is a good competitor when compared to other browse species. The change 

in basal area (c_BA) coefficient is positive suggesting that when the area is harvested there will be 

less No BROWSE being present at time 2. The positive coefficient for the eutric cambisol soil 

group (scDJ) suggests that in this soil group the probability for No BROWSE to appear is higher. 

CONIFER BROWSE - 1 

Jf CONIFER BROWSE is present at time ], what is the probabi/ity of CONIFER BROWSE being 

present at time 2 . 

The coefficients for variables pure Norway spruce (STDI_T2), one layer stands (SSDI_T2) are 

negative. The negative coefficients indicate that in these cases the probability of CONIFER 

BROWSE being present at time 2 is lower. This is as expected since in these cases conifer growth 

would be expected to be very good. Norway spruce has a high juvenile conifer growth rate and 

one layer stands have no overtopping vegetation to suppress growth. The shade herb vegetation 

type (GVDI) also has a negative coefficient, however this type is predominantly in growth zones 9 

and 1 0  which are deciduous areas. In this case the CONIFER BROWSE may be decreasing due to 

high competition from deciduous species like beech. The No BROWSE (A_NOSH_TI) variable has a 

negative coefficient suggesting that as the area of No BROWSE increases the probability of 

CONIFER BROWSE decreases. This is also represented by the negative coefficients for variables 

REGEN II (JUNGIISH_TI) and POLE (STANGSH_T2) ,  which indicate that in these cases the stand is 

either exiting the browsable region and/or suppressing growth below. The soil group variables, 

spodi-dystric cambisols (SCD4), substrate induced podzols (SCD6), the leptosols (SCDJ7 and SCDJB) 

have positive coefficients suggesting that in these soil types growth is poorer. In growth zones, 

12 (GZD12). 1 7  (GZD1 7) and 1 8  (GZD18) the probability of CONIFER BROWSE is higher. The Change 

in basal area (c_BA) coefficient is negative suggesting that after harvesting there is a higher 

probability of CONIFER BROWSE being present at time 2, compared to a non harvest scenario. 
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CONIFER BROWSE - 0 

..lf CONIFER BROWSE is not present at time 1, what is the probability ofCONIFER BROWSE being 

present at time 2. 

Elevation (ELEV) and elevation squared (ELEV2) have positive and negative coefficients 

respectively. This indicates that, as elevation increases there is a higher probability that conifer 

will encroach onto a site, to a maximum, which exists at approximately 1300 meters in elevation. 

The STDO_T2 variable specifies if there are no trees in the angle count at time 2. The coefficient is 

positive which suggests that when there are no trees in the angle count, the density of the canopy 

is lower, therefore there is a higher probability of conifer encroachment onto a site. The SSDJ_T2 

and SSD2_T2 variables have negative coefficients indicating that if a stand is one layered or 2 

layered, it is less likely to have conifer encroach compared to a 3 layer stand. In growth regions 

1 8  (GZDJB) and 20 (GZD20) the probability for conifer to encroach onto a site is higher compared 

to all other regions. The shade tolerant herb type (GVDJ) has a negative coefficient which 

supports the theory posed in Conifer -1, that competition is high with deciduous species. The 

sparse moss type ( GVD6) has a positive coefficient showing the increasing probability for 

encroachment in this primarily conifer vegetation type. 

DECIDUOUS BROWSE - 1 

..lfDECIDUOUS BROWSE is present at time 1, what is the probability ofDECIDUOUS BROWSE being 

present at time 2. 

If the percent share of DEcmuous BROWSE present at time 1 increases, represented by the 

logarithm A_LASH_TJ, the positive coefficient shows that the probability of DEcmuous BROWSE 

being present at time 2 also increases. The ELEV coefficient is negative indicating that as 

elevation increases, the probability of DECIDUOUS BROWSE staying on the site is lower. This is 

also supported by the upper slope relief variable (RLDJ) which also has a positive coefficient. 

The positive coefficients for growth zone 9 (GZD9) and 1 0  (GZDJO) identifies the primarily 

deciduous growth zones. The coefficient for the eutric planosol soil group 1 1  (scDJ 1) is positive 

and is found in the flysch zone of Austria and overlaps growth zones 7 and 8 .  These soils are 

heavy in nutrients, supporting primarily deciduous species. Conversely, the moderhumus 

vegetation type (GVD4) which primarily supports coniferous species, has a negative coefficient. 
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This is also supported by the pure Norway spruce type (STDI_T2) which has a negative 

coefficient. The No BROWSE (A_NOSH_TI) variable has a negative coefficient suggesting that as 

the area ofNo BROWSE increases the probability of DEcmuous BROWSE decreases. The change 

in basal area (c_BA) coefficient is negative which shows that after harvesting, the probability OF 

DEcrnuous BROWSE being present at time 2 is higher, compared to a non harvest scenario. 

DECIDUOUS BROWSE - 0 

.lfDECIDUOUS BROWSE is not present at time 1, what is the probability oj DECIDUOUS BROWSE 

being present at time 2. 

Elevation (ELEV) and elevation squared (ELEV2) have positive and negative coefficients 

respectively. This indicates that as elevation increases there is a higher probability that 

deciduous will encroach onto a site, to a maximum, which exists at approximately 500 meters in 

elevation. The logarithm No BROWSE (A_NOSH_TI) has a negative coefficient suggesting that as 

the area of No BROWSE increases the probability of DEcmuous BROWSE encroaching decreases. 

The negative coefficient of the pure Norway spruce type (STDI_T2) shows that the probability of 

deciduous species encroaching in this type is lower. Conversely, if the stand type is pure beech 

or mixed deciduous the probability is higher, illustrated by the positive coefficients for STDIO_T2 

and STD4I_T2. In the shade tolerant herb type (GVDI), the moderately moist herb type (GVD2), 

thermophilic herb types (GVD3) and the hydrophytic perennial shrub type (GVDI9) the coefficients 

are all positive. All these vegetation types support deciduous species. Unexpectedly, the 

moderhumus type (GVD4) is also positive. In growth zones 1 (GZDI) and 4 (GZD4) the probability 

of deciduous encroaching onto a site is lower, illustrated by the negative coefficient. This is 

probably due to the acidic soils in these regions. In the primarily deciduous growth zones (GZDB) 

and (GZDIO) the coefficients are positive. The change in basal area (c_BA) coefficient is negative 

which suggests that after harvesting the probability of DECIDUOUS BROWSE being present at time 

2 is higher, compared to a non harvest scenario. 
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SHRUB BROWSE - 1 

lf SHRUB BROWSE is present at time 1, what is the probability of SHRUB BROWSE being present 

at time 2 .  

As the percent share of SHRUB BROWSE present at time 1 increases, represented by the variable 

A_STSH_TJ, the positive coefficient shows that the probability of SHRUB BROWSE being present at 

time 2 also increases. The ELEV coefficient is negative indicating that as elevation increases, the 

probability of the specified shrubs staying on the site decreases. The positive slope coefficient 

(SLPE) shows that as the slope increases the probability of shrubs staying increases. THE No 

BROWSE (A_NOSH_TJ) variable has a negative coefficient suggesting that as the area OF No 

BROWSE increases the probability of SHRUB BROWSE decreases. This is also the case with the 

variable REGEN II (JUNGIISH_Tl) which has a negative coefficient. The spodi-dystric cambisols 

(SCD4) has a negative coefficient which supports that the shrub species prefer less acidic soil 

types. This is also the case with the negative coefficient for the moderhumus in conifer type 

(GVD4) which is more acidic. The hydrophytic perennial shrub type (GVD19) represents very wet 

sites and although the species listed prefer moist sites these sites may be too wet. In growth zone 

20 (GZD20) the negative coefficient suggests that SHRUB BROWSE will disappear between time 1 

and time 2. 

SHRUB BROWSE - 0 

lf SHRUB BROWSE in not present at time 1, what is the probability of SHRUB BROWSE being 

present at time 2. 

The ELEV coefficient is negative which indicates that as elevation increases, the probability ofthe 

specified shrubs encroaching onto the site decreases. However elevation interacts with both the 

growth zone 1 3  (GZD13) and the group of growth zones (GRP_Gz; l l (GZDJJ), 1 2(GZD12), 1 5(GZD15), 

1 7(GZD1 7) and 1 8  (GZD18)). The interaction of elevation with growth zone 13 indicates that when 

in this growth zone, the slope of the relationship is different. In this case probability of SHRUB 

BROWSE to appear is much higher at lower elevations and only moderately higher at higher 

elevations. The interaction with the group of growth zones is sirnilar to growth zone 13, such 

that it is higher than all other growth zones, but the slope remains much higher over all 

elevations. The negative coefficient for 1 layer stands (ssDJ_T2) shows that in these cases, the 



84 

encroachment of shrubs is less likely when compared to 2 or multilayer stands. Similarly, the 

negative coefficient for the pure beech stand type (STDIO_T2) indicates that beech is a much better 

competitor not allowing for encroachment by the shrub species. The positive coefficient for the 

shade tolerant herb type (GVDI), the subapline dwarf shrub type (GVD14) and the hydrophytic 

perennial shrub type (GVDI9) shows that these vegetation types support the shrubs listed. 

Inversely, the moss types ( GVD6 and GVD7) do not support these species. The positive coefficients 

for the southeast aspect (ASD4) and the southwest aspect (ASD6) shows that the species of shrubs 

listed prefer sunny drier locations. The No BROWSE (A_NOSH_TI) variable has a negative 

coefficient suggesting that as the area of No BROWSE increases the probability of SHRUB 

BROWSE encroaching decreases. The change in basal area (c_BA) coefficient is negative which 

shows that after harvesting the probability of SHRUB BROWSE being present at time 2 is higher, 

compared to a non harvest scenario. 

RASPBERRY BROWSE - 1 

.lfRASPBERRY BROWSE is present at time 1, what is the probabi/ity ojRASPBERRY BROWSE being 

present at time 2. 

As the percent share of RASPBERRY BROWSE present at time 1 increases, represented by the 

variable A_HISH_TI, the positive coefficient shows that the probability of RAsPBERRY BROWSE 

being present at time 2 also increases. The ELEV coefficient is negative indicating that as 

elevation increases, the probability of RASPBERRY BROWSE staying on the site decreases. The 

A_NOSH_TI variable has a negative coefficient suggesting that as the area ofNo BROWSE increases 

the probability of RASPBERRY BROWSE decreases. This is also the case with the REGEN ll 
variable JUNGIISH_TI which also has a negative coefficient. The negative coefficient for the pure 

Norway spruce stand type (STDI_T2) indicates that raspberry is less likely to continue to be 

present under a spruce stand compared to other stand types. The coefficients for the leptosols 

(SCDI7) and fluvisols (SCD22) are negative. Leptasols are weakly developed soils, low in nutrients 

which is unfavourable for raspberry. Fluvisols are also occasionally flooded. Although 

Ellenberg (1 996) suggests that raspberry is indifferent to water supply, it would make sense to 

believe that any plant that prefers open sunlight, is more apt to accept moderate moisture 

conditions. Being flooded occasionally, would be excessive. This could explain the negative 

coefficient. The coefficients for the moderhumus vegetation type (GVD4) and the hydrophytic 
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perennial shrub type (GVD19) are positive showing raspberries preference for the conditions in 

these vegetation types. 

RASPBERRY BROWSE- 0 

..lfRASPBERRY BROWSE is not present at time 1, what is the probability oj RASPBERRY BROWSE 

being present at time 2. 

The ELEV coefficient is negative indicating that as elevation increases, the probability of 

RASPBERRY BROWSE encroaching onto the site decreases. The STDO_T2 variable indicates that the 

subplot has no trees in the angle count at time 2. The positive coefficient shows that if the 

overstory of a stand is not very dense, raspberry is more likely to encroach onto the site. The 

coefficients for the moderhumus vegetation type (GVD4), the hydrophytic perennial shrub type 

(GVD19) and the shade tolerate herb type (GVDJ), are positive showing raspberries preference for 

the conditions in these vegetation types. The negative coefficient for growth zone 17  (GZD17) 

indicates that it is less likely for raspberry to encroach onto a site when it is in this zone. The 

logarithm No BROWSE (A_NOSH_Tl) variable has a negative coefficient suggesting that as the area 

of No BROWSE increases the probability of RASPBERRY BROWSE encroaching decreases. The 

coefficients for the leptosols (SCD17 and SCDJB), the chromic cambisols (SCDI9), the gleysols 

(scmo) and the fluvisols (SCD21) are all negative. This shows raspberries preference for drier 

more nutrient rich sites. The change in basal area (c_BA) coefficient is negative and the square of 

change in basal area is positive suggesting that when a stand is harvested there is a higher 

probability ofRASPBERRY BROWSE being present at time 2, compared to a non harvest scenario. 

BLUEBERRY BROWSE - 1 

..lfBLUEBERRY BROWSE is present at time 1 what is the probability ofBLUEBERRY BROWSE being 

present at time 2. 

The BLUEBERRY BROWSE variable (A_HESH_TI) has a positive coefficient which suggests that as 

the percent share of blueberry at time 1 increases, the probability of blueberry being present at 

time 2 increases. Elevation (ELEV) has a positive coefficient which is intuitively correct since we 

expect blueberry to favour higher altitudes. The slope coefficient (SLPE) is negative suggesting 

that as slope increases, the probability of blueberry staying on the site decreases. The STDO_T2 
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variable indicates if a subplot has no trees in the angle count at time 2. The negative coefficient 

shows that if the overstory of a stand is not very dense, blueberry will disappear from the site, 

which is intuitively correct since blueberry prefers shade (Ellenberg 1996). In growth region 17  

( GZD1 7) the probability ofblueberry staying blueberry is  less than all other growth regions. If  the 

soil group is dystric cambisols (scD2), the probability of blueberry being present at time 2 

decreases in comparison to other soil types. The reason for this is not intuitively clear, since soil 

group 2 is an acidic type which favours blueberry. It is possible that where this soil type occurs, 

the elevation is much lower or the soil type is too acidic. The sparse moss ground vegetation type 

( GVD6) is a blueberry type therefore it is expected that the probability increases if it is in this type. 

Conversely, it is not surprising that the coefficients for the moderhumus type (GVD4) and the 

hydrophytic perennial herb type (GVDI9) are negative. The moderhumus type is not as acidic as 

blueberry would prefer and the hydrophytic type is much wetter. The change in basal area (c_BA) 

coefficient is negative which suggests that after harvesting there is a lower probability of 

BLUEBERRY BROWSE being present at time 2, compared to a non harvest scenario. 

Blueberry - 0 

..lfBLUEBERRY BROWSE is not present at time 1, what is the probability ojBLVEBERRY BROWSE 

being present at time 2. 

Elevation (ELEV) has a positive coefficient which is intuitively correct since we expect blueberry 

to favour higher altitudes .  The slope coefficient (SLPE) is negative suggesting that as slope 

increases, the probability ofblueberry encroaching on the site decreases. The sparse moss ground 

vegetation type (GVD6) is a blueberry type, therefore, it is expected that the probability increases 

in this type. The positive coefficients for the northeast aspect (ASD2) and the northwest aspect 

(ASD8) shows that blueberry prefers shaded locations. The positive coefficients for the dystric 

cambisols (scD2), the spodi-dystric cambisols (sCD4) and the podzols (SCD5 and SCD6) suggests 

that blueberry is more likely to encroach on these soil types compared to the other types. The 

negative coefficient for the mixed deciduous stand type (STD4J_T2) indicates that the probability 

of blueberry encroaching onto a site when it is mixed deciduous is lower. The percent share of 

REGEN I at time 1, squared, (JVNGISH_TI) has a negative coefficient. This shows that as the 

percent share of REGEN I increases, the probability of blueberry encroaching onto a site 

decreases. This shows that blueberry is in direct competition with REGEN I and is not the better 
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competitor. The crown competition factor at time 2 (CCF_T2) has a negative coefficient. This 

suggests that although blueberry prefers shaded areas, it becomes more difficult to encroach onto 

a site as the overstory density increases. 

ERICA - 1 

..lfERICA BROWSE is present at time 1 what is the probability ofERICA BROWSE being present at 

time 2. 

The negative coefficient for water regime (WTRG) shows that as the site becomes wetter the 

probability of ERICA staying on a site decreases. The coefficient for the variable representing 

growth zone 1 (GZDJ) is negative showing that the probability of ERICA staying in this zone is 

much less than other zones. The ERICA ground vegetation type (GVD15) is an "Erica" type 

therefore it is expected that the probability of ERICA staying on the site increases if it is in this 

type. 

ERICA - 0  

..lfERICA BROWSE is not present at time 1 what is the probability ofERICA BROWSE being present 

at time 2. 

The negative coefficient for water regime (WTRG) shows that as the site becomes wetter the 

probability of ERICA encroaching onto a site decreases. The ERICA ground vegetation type 

(GVD15) is an "Erica" type therefore it is expected that the probability of ERICA encroaching onto 

this site increases in this type. Interestingly, the positive coefficients for the moss ground 

vegetation type (GVD5 and GVD6), the blueberry type (GVD9) and the pasture forest type (GVD16) 

shows that the probability for ERICA to encroach onto these sites is higher than other vegetation 

types. The positive coefficients for the leptosols (SCDJ7 and SCDJB) suggest that ERICA is more 

likely to encroach onto these soil types compared to other types. The A_NOSH_Tl variable has a 

negative coefficient suggesting that as the area of No BROWSE increases the probability of ERICA 

encroaching decreases. 
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HERBS - 1 

.({HERB BROWSE is present at time 1 what is the probability ofHERB BROWSE being present at 

time 2. 

The variable logarithm A_KRSH_TI has a positive coefficient which suggests that as the percent 

share of HERB BROWSE at time 1 increases, the probability of HERB BROWSE being present at 

time 2 increases. The negative coefficient for the pure Norway spruce type (STDI_T2) shows that 

the probability of HERB BROWSE staying under a spruce canopy is lower. This is also the case for 

the spodi-dystric cambisol soil group (SCD4) which has a negative coefficient. The negative 

coefficients for the moss ground vegetation types (GVD5 and GVD6), the Avene/la type (GVDB) and 

the Erica type (GVDI5) show that HERB BROWSE, if present in these types at time 1 ,  have a lower 

probability of staying compared to other types. In growth zones 1 and 4 ( GZDI and GZD4) the 

coefficients are also negative. In all the cases above where the probability of herbs staying 

decreases, the reason is most likely the acidic soil. For growth zones 9, 10, 12  (GZD9, GZDIO 

GZDI2) and 17 (GZDI7) the coefficients are positive, showing that the probability of staying 

increases in these zones compared to other zones. The positive coefficient for the quadratic 

mean diameter at time 2 (QMD_T2) shows that as stands become older, the probability for HERB 

BROWSE to stay on the site increases. The negative coefficient for percent share of REGEN I 

(JUNGISH_TI) and REGEN ll (JUNGIISH_TI) at time 1 shows that as the density of these two growth 

classes increases, the probability ofHERB BROWSE staying on the site decreases. 

HERBS - 0 

.({HERB BROWSE is not present at time 1 what is the probability ofHERB BROWSE being present 

at time 2. 

In growth zone 1 (GzDI) the coefficient is negative suggesting that the probability for HERB 

BROWSE to encroach onto a site in this zone is lower than other zones. The reason is most likely 

the acidic soil of this zone. The coefficients for the shade tolerant herb type (GVDI), the 

moderately moist herb type ( GVD2) and the hydrophytic perennial shrub type ( GVDI9) are positive. 

These are herb types, therefore it is expected that the probability for HERB BROWSE to encroach 

on these sites is higher than other types. Conversely, the two moss types (GVD5 and GVD6) have 

negative coefficients showing the dislike of these types by herbs. The A_NOSH_TI variable has a 
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negative coefficient suggesting that as the area ofNo BROWSE increases the probability of HERB 

BROWSE encroaching decreases. The coefficients for the stagnie gleysols (SCD14), the leptosols 

(scDJ7 and SCDIB) and the chromic cambisols (SCDI9) are all positive. This shows the herb's 

ability to encroach onto rendzic soil types or soils with hydromorphic characteristics. The change 

in basal area squared (c_BA) coefficient is positive suggesting that after harvesting there is a 

lower probability of HERB BROWSE encroaching at time 2, compared to a non harvest scenario. 

The positive coefficient for the quadratic mean diameter at time 2 (QMD_T2) shows that as stands 

become older, the probability for HERB BROWSE to encroach into them increases. The positive 

coefficient for the lower slope relief variable (RLD3) shows that where nutrients and moisture 

pools, there is a higher probability for HERB BROWSE to encroach compared to other positions of 

relief. 

FERNS - 1 

.lfFERN BROWSE is present at time 1 what is the probability of FERN BROWSE being present at 

time 2. 

The variable logarithm A_FASH_TJ has a positive coefficient which suggests that as the percent 

share of fems at time 1 increases, the probability of fems being present at time 2 increases. The 

positive coefficient for water regime (WTRG) shows that as the site becomes wetter the probability 

of fems staying on a site increases. The square root of elevation (ELEV) has a positive coefficient 

which suggests that fems favour higher altitudes. The negative coefficient for the southeast 

(ASD4), south (ASD5) and the southwest (ASD6) facing slopes shows fems dislike for the hotter, 

drier aspects. From the positive coefficient of the moderhumus ground vegetation type ( GVD4), it 

can be seen that·fems prefer this vegetation type. Conversely, the more competitive, grass cover 

type (GVD12) has a negative coefficient showing the fems inability to compete with grasses. For 

growth zones 1 (GZDI), 4 (GZD4), 8 (GZDB) and 1 2  (GZD12) the coefficients are positive showing 

that if fems are present at time 1 in these zone, the probability for them to stay at time 2 is higher 

compared to other zones. Conversely, for growth zone 1 7  (GVD17) the probability for fems to 

stay at time 2 is lower. 
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FERNS - 0 

lfFERN BROWSE is not present at time 1 what is the probability ofFERN BROWSE being present at 

time 2. 

The positive coefficient for water regime (wTRG) shows that as the site becomes wetter the 

probability of fems encroaching onto a site increases. The positive coefficient for the pure 

Norway spruce type (STDI_T2) indicates that fems prefer this type over other types. The positive 

coefficient for the north (ASDI), northeast (ASD2) and the northwest (ASD8) facing slopes shows 

fems preference for shady aspects. The positive coefficient for the quadratic mean diameter at 

time 2 (QMD_T2) shows that as stands become older, the probability for fems to encroach 

increases. From the positive coefficient of the moderhumus ground vegetation type (GVD4) and 

the hydrophytic perennial shrub type (GVDI9), it can be seen that fems will encroach onto these 

sites more than other types. The coefficients for the stagnie gleysols (SCDI4) and the spodi-dystric 

cambisols (SCD4) are positive indicating that fems are more likely to encroach onto sites with 

these soils than others. The coefficients for growth zone 8 (GZDB), 1 1  (GZDII)  and 12  (GZDI2) are 

all positive. This indicates that in these growth zones, fems are more likely to encroach. 

Conversely, in growth zones 1 8  (GZDIB) and 20 (GZD20) the opposite is true. 

GRASS - 1  

lfGRASS BROWSE is present at time 1 what is the probability ofGRASS BROWSE being present at 

time 2. 

The logarithm(A_GRSH_TI) has a positive coefficient which shows that as the percent share of 

grass at time 1 increases, the probability of grass being present at time 2 increases. Elevation 

(ELEV) has a positive coefficient which suggests that grass is a better competitor at higher 

elevations. The negative coefficients for REGEN I (JUNGIISH_TI) and POLE (STANGSH_T2 ) shows 

that as the density of these growth classes increases, the probability for grass to stay on the site 

decreases. The change in basal area (C_BA) coefficient is negative suggesting that after harvesting 

there is a higher probability of grass being present at time 2, compared to a non harvest scenario. 

The positive coefficient for the leptosol soil group (SCDI7) shows grasses strength as a competitor 

on poor sites where there is less competition from above. The negative coefficient for the eutric 

cambisols (scD3) shows that on very basic sites, grass is less of a competitor compared to other 
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soil types. In the shade tolerant herb vegetation type (GVDI), the moderhumus in conifer stands 

(GVD4), the moss types (GVD5 and GVD6), the hydrophytic perennial shrub type (GVDI9) and the 

Ca/luna type ( GVDIO), the coefficients are negative suggesting that grass is less of a competitor in 

these types compared to other vegetation types. In growth zone 1 (GZDI) and 2 (GZD2) the 

coefficients are both positive indicating that grasses compete weH in these zones. Conversely, in 

growth zone 1 1  ( GZDII) grasses are not as competitive as shown by the negative coefficient. 

GRASS - O  

If GRASS BROWSE is not present at time 1 what is the probability of grass being present at time 

2. 

Elevation (ELEV) has a positive coefficient which suggests that grass is a better competitor at 

higher elevations. The STDO_T2 variable indicates that the subplot has no trees in the angle count 

at time 2.  The positive coefficient shows that if the overstory of a stand is not very dense, grass 

is more likely to encroach onto the site. In pure beech stand types (STDIO_T2) the negative 

coefficient shows that grass is less likely to encroach onto a site compared to other stand types. 

The A_NOSH_TI variable has a negative coefficient suggesting that as the area of No BROWSE 

increases the probability of GRASS BROWSE encroaching decreases. The negative coefficients for 

REGEN I (JUNGIISH_TI) and POLE (STANGSH_T2 ) shows that as the density of these growth classes 

increases, the less grass will encroach onto a site. The change in basal area (c_BA) coefficient is 

negative suggesting that after harvesting there will be a higher probability of grass encroaching 

onto a site, compared to a non harvest scenario. In the Avene/la (GVD8) and the competing grass 

(GVDI2) ground vegetation types the coefficients are positive as expected. In the moderhumus 

type ( GVD4) the coefficient is negative showing grasses less competitive nature in this vegetation 

type. In growth zone 1 (GZDI) the coefficient is positive showing that the probability of grass 

encroaching is high er compared to other growth zones. In growth zone 1 7  ( GZD ! 7) the opposite 

is true. 
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5 .2.2 Logarithmic Regressions 

5.2.3 Growth Classes 

REGEN I - 1 (with trees) 

lfREGEN I is present at time 1, in what quantity will it be present at time 2, when an overstory 

exists 

Unlik:e the logistic model, the state of REGEN I (JUNGISHT_Tl) at time 1 was important in 

quantifying it. The coefficient is positive therefore as the percent share of REGEN I increases the 

quantity of REGEN I being present at time 2 increases. The positive coefficient for logarithm 

A_NOSH_TJ suggests that when there are large areas with No BROWSE, the age ofthe stand is very 

young and will only become taller and denser. The positive coefficient for the grass browse class 

(A_GRSH_Tl) shows that as the density of grass increases, more REGEN I will be present at time 2. 

This is correct since the reduced growth due to competition will only increase the quantity of 

REGEN I not allowing it to grow out of the class. In growth zones 7 ( GZD7), 9 ( GZD9) and 10  

(GZDJO) the positive coefficients are interpreted to reflect the management practice of  planting 

conifer species in primarily deciduous (beech) forested areas. The high deciduous competition 

suppresses the growth of conifers. As with grass competition, the quantity increases, but it does 

not grow out of the class. In growth zone 1 9  and 20 (GZDJ9 and GZD20) the negative coefficients 

suggest that growth is better or there is less competition, therefore the Regen I will grow into 

Regen II. The positive coefficient for the vegetation moist herb type (GVD2) suggests that 

competition may be higher than in other vegetation types. If it is a two layer stand (ssm) the 

positive coefficient shows that more REGEN I will be present at time 2. The positive coefficient 

for west aspect (asp7) suggests that west exposures have slower growth rates. The change in 

quadratic mean diameter (c_QMD) coefficient has a positive coefficient. This suggests that if 

there is harvesting from above, the more REGEN I be on the site due to the newly opened area. 
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REGEN Il - 1 (with trees) 

.((REGEN II is present at time 1, in what quantity will it be present at time 2, when an overstory 

exists 

The logarithm REGEN II (JUNGIISH_Tl) Status at time 1 shows that as the percent share of REGEN n 
at time 1 increases, the quantity at time 2 increases. The positive coefficient for ELEV indicates 

that as elevation increases, more REGEN II will be present at time 2. The negative coefficient of 

the pure Norway spruce stand (STDI _T2) shows that spruce grows faster than other species. If it is 

a single layer stand (ssDJ_T2), there is less REGEN II at time 2, since there is no dense stand of 

competing overstory trees. In growth zones 6 (GZD6), 1 1  (GZDJJ) and 20 (GZD2o) the positive 

coefficients suggest that the amount of REGEN II at time 2 will increase. The variable logarithm 

A_NDSH_TI represents conifer REGEN I. It has a positive coefficient which suggests that the more 

REGEN I present (young conifer), the more REGEN II will be present at time 2 .  In pure beech 

stand types (STDIO_T2) the positive coefficient suggests that more beech will be present at time 2. 

The C_BA variable has a negative coefficient which suggest that after harvesting, more REGEN II 
will be present at time 2. 

REGEN II - 1 ( no trees) 

.((REGEN II is present at time 1, in what quantity will it be present at time 2, when no overstory 

exists. 

The logarithm REGEN II (JUNGIISH_TI) status at time 1 shows that as the percent share ofREGEN II 
at time 1 increases, the quantity at time 2 increases. Elevation (ELEV) and one layer stands 

(ssDI_T2) interact. The SSDI_T2 has a negative coefficient and the interaction term (ELEV x SSDI_T2) 

has a positive coefficient. The combination of these variables shows that elevation only has an 

effect in one layer stands. In one layer stands, as the elevation increases, more REGEN II will be 

present at time 2. In the inventory, by convention, a stand can be REGEN I or REGEN II but not 

both. The logarithm A_NDSH_TI and logarithm A_LASH_TI represent conifer and deciduous REGEN I 

and to some degree REGEN II from time 1 .  The coefficient for both of these are positive, 

suggesting that as the percentage of REGEN I increases, the younger the REGEN II stand is. The 

younger it is, the higher the quantity of REGEN II at time 2, since it is unlikely to grow into a 

POLE stand. In growth zones 3 (GZD3), 7 {GZD7) and 1 9  (GZDI9) the negative coefficients suggest 
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that the amount of REGEN li at time 2 will decrease. If there are no trees in the angle count at 

time 2 (STDO_T2), the negative coefficient suggests that the amount of REGEN li at time 2 will 

decrease. The negative coefficients for the soil groups gleysols (scD2o) and fluvisols (SCD22) 

show that the wetter sites have better growth therefore less REGEN li will remain at time 2. The 

soil group ferralic cambisol (SCD15) also has a negative coefficient, however the underlying 

reason is unknown. In the moist herb (GVD2), the moderhumus in conifer stands (GVD4) and the 

moss type ( GVD7) the coefficients are negative. This shows the good growth that occurs in these 

areas and indicates that at time 2 there is less REGEN II. 

REGEN II - 0 (with trees) 

..lf REGEN II is not present at time 1, in what quantity will it be present at time 2, when an 

overstory exists. 

The positive coefficient of logarithm JUNGISH_Tl shows that as the percent share of REGEN I 

increases, the higher quantity of REGEN II will be present at time 2. The negative coefficient of 

ELEV shows that as elevation increases, the less REGEN II will be found at time 2. The negative 

coefficient of SSDJ_T2 shows that one layer stands will have less REGEN II appearing than 

multilayer stands. The coefficients for soil types SCD3 and SCD4 are both positive. In relation to 

other soil types, it is expected that growth will be better. Therefore, more REGEN II should appear 

at time 2. The negative coefficient in GZD7, GZD9 and GZDJO is interpreted to reflect the 

management practice of planting conifer species in primarily deciduous (beech) forested areas. 

The high deciduous competition suppresses the quantity of conifers that encroach onto a site. 

The negative coefficient of A_NOSH_TJ suggests that when there are large areas with No BROWSE, 

the understory vegetation is either very young or low to the ground and/or the density of the 

canopy above is very high, suppressing the amount of REGEN II that encroaches. The positive 

coefficient for the STDO_T2 variable suggests that ifthere are no trees in the angle count at time 2, 

the canopy is not dense, providing more light to the forest floor. The positive coefficients for the 

fluvisol (SCD22) soil group shows that on wetter sites more REGEN II will encroach. On the grass 

(GVD12) and the pioneer (GVD17) vegetation types the coefficients are negative. This shows the 

difficulty for REGEN II to appear on these sites. Conversely, on the hydrophytic perennial shrub 

ground vegetation type (GVD19) more REGEN II is expected to appear at time 2 compared to other 

vegetation types. The OVERSH_T2 is a summation of the percent shares of STANGSH_T2. BHISH_T2. 
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BHIISH_T2 and STARKSH_T2. The negative coefficient shows that as density of the overstory 

increases, the less REGEN li will appear at time 2. 

REGEN II - LARCH 

.lfREGEN II is predicted to be present at time 2, what quantity ofthis REGEN II will be larch. 

The positive coefficient for (LA_JUNGIISH_Tl) shows that as the percent share of LARCH REGEN II 
at time 1 increases, more LARCH REGEN II will be present at time 2. The LARCH REGEN I 

variable, (LA_JUNGISH_Tl) shows that when the regeneration is younger, as the percent share of 

LARCH REGEN I at time 1 increases, even more LARCH REGEN II will be present at time 2. This is 

correct since, REGEN II will grow into a POLE stand and REGEN I will grow into REGEN II. The 

positive coefficient for elevation (ELEV) shows that as elevation increases more LARCH REGEN II 
will be present. If the stand type is pure spruce (STDJ_T2) or pure stone pine (STD6_T2), the 

negative coefficients show that less LARCH REGEN II will appear at time 2. If the soil group is 

leptosols derived from non-calcareous material (SCDJ), then less LARCH REGEN II will be found. 

Conversely, on climate induced podzolic soil types (scD5), more LARCH REGEN II will be found. 

If the ground vegetation type is subalpine dwarf shrub type (GVD14) or the pasture forest type 

(GVD16), the positive coefficients suggest that more LARCH REGEN II will be present at time 2. 

REGEN II - BROADLEA VED TREES 

.lf REGEN II is predicted to be present at time 2, what quantity of this REGEN II will be 

broadleaved. 

The positive coefficient for logarithm(BL_JUNGIISH_Tl) shows that as the percent share of 

BROADLEA VED REGEN II at time 1 increases, more BROADLEA VED REGEN II will be present at 

time 2.  The BROADLEAVED REGEN I variable, logarithm(BL_JUNGISH_Tl) shows that when the 

regeneration is younger, as the percent share of BROADLEA VED REGEN I at time 1 increases, even 

more BROADLEA VED REGEN II will be present at time 2.  This is correct since, REGEN II will grow 

into a POLE stand and REGEN I will grow into REGEN II. The negative coefficient for elevation 

(ELEV) shows that as elevation increases less broadleaved regen II will be present. If the stand 

type is pure beech (STDJO_T2), pure oak (STDJJ_T2), mixed deciduous (STD4J_T2) or mixed 

coniferous (STD40_T2) then more broadleaved regen II, represented by their positive coefficients, 
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will be present at time 2. In growth zones 3 (GZD3), 6 (GZD6) , 10 (GZDIO) and 1 9 (GZDI9) the 

positive coefficients support the fact that these growth zones are predominantly deciduous. The 

negative coefficient for the substrate induced podzol soil group (SCD6) shows that on these soils, 

deciduous species are less prevalent. In the shade tolerant herb type (GVDI) and the depletion or 

litter erosion sites (GVDI3) the positive coefficient shows that more broadleaved species will be 

present at time 2. Conversely, in the sparse moss type (GVD6) and the competing grass cover type 

(GVDI2) it is expected that less broadleaved species will be present at time 2. 

5.2.4 Wildlife Browse Classes 

NO BROWSE - 1  

IfNo BROWSE is present at time 1, in what quantity will it be present at time 2. 

The positive coefficient of logarithm A_NOSH_TI indicates that with an increasing percent share of 

No BROWSE (areas completely void of browsable vegetation) at time 1 ,  the more area at time 2 

will have No BROWSE. The positive coefficients for logarithm JUNGIISH_TI and OVERSH_T2 (the 

Summation of the percent shares of STANGSH_T2, BHISH_T2, BHIISH_T2 and STARKSH_T2) shows that as 

density of the overstory increases, the more No BROWSE will appear at time 2. The negative 

coefficient of STDO_T2 indicates that ifthere are no trees in the angle count, the stand is not dense, 

allowing sufficient light to reach the forest floor for vegetation. The moss ground vegetation 

types (GVD6 and GVD7) have positive coefficients. These two types represent a large group 

spanning the coniferous regions, therefore it is expected that coniferous regions would have 

more No BROWSE, when compared to deciduous types. The c_BA variable has a positive 

coefficient suggesting that after harvesting there will be less No BROWSE since opening up ofthe 

canopy allows for more understory vegetation. The pure Norway stand type (STDI_T2) and the 

pure Beech type (STDIO_T2) both have positive coefficients indicating that compared to other 

stand types there will be more areas with No BROWSE. In the climate induced podzol soil type 

(scD5), the negative coefficient suggests that there will be less areas of No BROWSE. The shade 

tolerant herb (GVDI) and the moderhumus in conifer stands (GVD4) both have positive coefficients 

indicating that there will be more areas with No BROWSE in these vegetation types. Quadratic 

mean diameter at time 2 (QMD_T2) represents the age and size of the stand . The negative 

coefficient suggests that older stands have less areas ofNo BROWSE. 
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No BRowsE - 0 

IfNo BROWSE is not present at time 1 (area is 100% browse), in what quantity will it be present 

at time 2. 

No BROWSE when No BROWSE is not present at time 1 ,  indicates that all the area available for 

understory vegetation is fully occupied. The square of the elevation (ELEV) coefficient is negative 

indicating that as elevation increases, the less the area with No BROWSE. This is as expected 

since growth is slower at higher elevations, so change will occur much slower. The variables 

GVDI, GVD2, GVD4 and GVD6 all have positive coefficients indicating that these have higher rates of 

change compared to other vegetation types. The square of OVERSH_T2 is a summation of the 

percent shares of STANGSH_T2, BHISH_T2 and BHIISH_T2, squared. This variable along with the 

square of REGEN II (JUNGIISH_TI) have positive coefficients showing that if an area is fully 

occupied at time 1, the more areas with No BROWSE there will be at time 2, as the shares ofthese 

variable increase. Growth zones 15 (GZDI5), 1 8  (GZDI8) and 20 (GZD20) have positive coefficients 

indicating that in these regions, more areas of No BROWSE will appear at time 2 compared to 

other regions. In GZD9 the opposite is true. The positive coefficient for STDI_T2 indicates that if 

the stand type is pure Norway spruce, more areas with No BROWSE will appear, since spruce will 

quickly grow out of the browsable region and/or there is normally less browse below a spruce 

stand. This is the same for the square of ASUNGSH_TI which represents the sum ofthe A_NDSH_TI, 

A_LBSH_TI and A_STSH_TI, squared. These types are trees and shrubs which will also grow out of 

the browsable region. Iftheir density is sufficient, no other browsable species will appear below, 

therefore more areas of No BROWSE will appear. The variable GRASS BROWSE (A_GRSH]l) has a 

negative coefficient which indicates that as the percent share of grass increases at time 1 ,  the less 

areas with No BROWSE will appear. This is intuitively correct since grass will not grow out ofthe 

browsable region and is a good competitor when compared to other browse species. The change 

in basal area (c_BA) coefficient is positive which suggests that after harvest there will be less 

areas with No BROWSE when compared to a non harvest scenario. The positive coefficient for the 

eutric cambisol (SCD3) and the cambisols (scDJo), suggest that in these soil groups more areas of 

No BROWSE will appear compared to other soil groups. 
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CONIFER BROWSE - 1 

.lfCONIFER BROWSE is present at time 1, in what quantity it will be present at time 2. 

The coefficient for the variable pure Norway spruce type (STDI_T2) is negative. The negative 

coefficient indicates that the area of CONIFER BROWSE present at time 2 will be lower. This is as 

expected since Norway spruce has a high juvenile conifer growth rate. The shade tolerant herb 

type (GVDI) is predominantly in growth zones 9 (GZD9) and 10 (GZDIO) which are predominantly 

deciduous. In these cases the CoNIFER BROWSE may be decreasing due to high competition with 

the beech. The square root of the No BROWSE (A_NOSH_TI) variable has a negative coefficient 

suggesting that as the area of No BROWSE increases, the area of CONIFER BROWSE decreases. 

With a more dense stand above, less CONIFER BROWSE is expected. The negative coefficients for 

variables REGEN II (JUNGIISH_Tl) and the OVERSH_T2 (summation of the POLE (STANGSH_T2) 

MATURE I (BHISH_T2) and MATURE II (BHIISH_T2 )) indicates that as the density above becomes 

greater the less CONIFER BROWSE below. The eutric cambisols (scD3), the spodi-cambisol (SCD4), 

the substrate induced podzols (SCD6), leptosols (SCD17 and scDI8) and the chromic cambisols 

(sCDI9) have positive coefficients suggesting that in these soil types more CONIFER BROWSE will 

be present at time 2. In the SCD4 and SCD6 it may also be that these soil types favour conifer 

species and therefore conifer regeneration. In growth regions 12,  1 7  and 1 8  (GZD12. GZDJ7 and 

GZDI8) the positive coefficients suggest that more CONIFER BROWSE will be present at time 2 

compared to other growth regions. Conversely in growth zone 1 0  (GZDIO) there are less areas 

with CONIFER BROWSE at time 2. This can possibly be explained by the competition with beech. 

The change in basal area (c_BA) coefficient is negative which suggests that after harvest there 

will be more CONIFER BROWSE at time 2, compared to a non harvest scenario. The positive 

coefficient for the square root of conifer browse (A_NDSH_TI) shows that as the percent of young 

conifer trees, REGEN I, increases, the more CONIFER BROWSE will be present at time 2.  

CONIFER BROWSE - 0 

.lfCONIFER BROWSE is not present at time 1, in what quantity it will be present at time 2. 

Elevation (ELEV) coefficient is positive indicating that as elevation increases the more Conifer 

Browse at time 2 will be found. This is intuitively correct since conifer species are more 

common at higher elevations. The STDO_T2 variable indicates that there are no trees in the angle 
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count at time 2. The coefficient is positive which suggests that as density of the canopy 

decreases, there is more conifer encroachment onto the site. In growth regions 1 1 , (GZDJJ), 12 

(GZDI2), 1 8  (GZD18) and 20 (GZD20) more conifer will encroach onto a site compared to all other 

regions. The shade tolerant herb type (GVDI) has a negative coefficient showing that competition 

is high with deciduous species. In the sparse moss type ( GVD6) has a positive coefficient showing 

that more encroachment will occur in this primarily conifer vegetation type. The sparse moss 

type (GVD6), the Calluna type (GVDIO), the pasture type (GVDI6) and the seep (GVDI8) vegetation 

types, the positive coefficients show that more CONIFER BROWSE encroachment will occur in 

these types. The negative coefficients for variables REGEN II (JUNGIISH_TI), OVERSH_T2 

(summation of POLE (STANGSH_T2), MATURE I (BHISH_T2), MATURE II (BHIISH_T2 ) and old growth 

(STARKSH_T2)) indicates that as the density above becomes greater the less CONIFER BROWSE will 

be found below. The square root of the No BROWSE (A_NOSH_TI) variable has a negative 

coefficient suggesting that as the area of No BROWSE increases the area of CONIFER BROWSE 

decreases. 

DECIDUOUS BROWSE - 1 

.ifDECIDUOUS BROWSE is present at time 1, in what quantity it will be present at time 2. 

As the percent share of DEcmuous BROWSE present at time 1 increases, represented by the 

logarithm A_LASH_TI, the more DEcmuous BROWSE will be present at time 2. The elevation 

(ELEV) coefficient is negative indicating that as elevation increases, the less DECIDUOUS BROWSE 

will be found. This is intuitively correct since deciduous species are more common at lower 

elevations. The positive coefficients for growth zone 6 (GZD6), 9 (GZD9) and 1 0  (GZDJO) identifies 

the primarily deciduous growth zones. The positive coefficients for growth zone 14 (GZDI4) 

suggests that more DEcmuous BROWSE at time 2 will be found in this growth zone compared to 

others. The coefficient for soil group 1 1  (scDJ 1) is positive. This soil type is found in the flysch 

zone of Austria overlapping growth zones 7 and 8 .  These soils are heavy in nutrients supporting 

primarily deciduous species. Conversely, the pure Norway spruce type (STDI_T2) has a negative 

coefficient. The A_NOSH_TI variable has a negative coefficient suggesting that as the area of No 

BROWSE increases the area of DECIDUOUS BROWSE decreases. The coefficient for the soil group 

dystric cambisols (scm) is negative suggesting that in this type, if DEcmuous BROWSE is found 

at time 1 ,  less DEcmuous BROWSE will be found at time 2.  The opposite is true for the spodi-
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dystric cambisols (SCD4). The change in basal area (c_BA) coefficient is negative which suggests 

that after harvesting there will be more DEcmuous BROWSE present at time 2, compared to a non 

harvest scenario. The negative coefficients for variables, REGEN ll squared (JUNGIISH_TI), and 

OVERSH_T2 (Summation of POLE (STANGSH_T2) AND MATURE I (BHISH_T2)) indicates that as the 

density above becomes greater the less DEcmuous BROWSE will be found below. 

DECIDUOUS BROWSE - 0 

..lfDECIDUOUS BROWSE is not present at time 1, in what quantity will it be present at time 2. 

The elevation (ELEV) coefficient is negative indicating that as elevation increases, the less 

DECIDUOUS BROWSE will be found. This is intuitively correct since deciduous species are more 

common at lower elevations. The A_NOSH_TJ variable has a negative coefficient suggesting that as 

the area of No BROWSE increases the less DEcmuous BROWSE will be found at time 2. The 

negative coefficient of the pure Norway spruce type (STDI_T2) shows that less deciduous species 

will encroach in this type. Conversely, if the stand type is pure beech or mixed deciduous the 

more it will encroach. This is illustrated by the positive coefficients for STDJO_T2 and STD4I_T2. 

In the shade tolerant herb type (GVDI), the moderately moist herb type (GVD2), thermophilic herb 

types (GVD3), and the hydrophytic perennial shrub type (GVDI9) the coefficients are positive. All 

these vegetation types support deciduous species. Unexpectedly, the moderhumus type (GVD4) is 

also positive. In growth zones 1 (GZDI) and 4 (GZD4) less DEcmuous BROWSE will encroach onto 

a site, illustrated by the negative coefficient. This is probably due to the acidic soils in these 

regions. In the primarily deciduous growth zones 6 (GZD6), 7 (GZD7), 8 (GZD8) and (GZDIO) the 

coefficients are positive. In growth zone 9 (GZD9) the coefficient is negative showing the 

significance of the beech in this spruce-fir-beech forested area. The change in basal area (c_BA) 

coefficient is negative which suggests that after harvesting more DECIDUOUS BROWSE will be 

present at time 2, compared to a non harvest scenario. 

SHRUB BROWSE - 1 

..lfSHRUB BROWSE is present at time 1, in what quantity will it be present at time 2. 

As the percent share of logarithm SHRUB BROWSE (A_STSH_TI) present at time 1 increases, the 

positive coefficient shows that more SHRUB BROWSE will be present at time 2. The ELEV 
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coefficient i s  negative indicating that as elevation increases, the less SHRUB BROWSE will stay on 

the site. The A_NOSH_Tl variable has a negative coefficient suggesting that as the area of No 

BROWSE increases the less SHRUB BROWSE will be present at time 2. This is also the case with 

the REGEN II (JUNGIISH_TJ) variable which has a negative coefficient. The spodi-dystric 

cambisols (SCD4) has a negative coefficient which supports that the SHRUB BROWSE prefer less 

acidic soil types. In the heavy texture cambisols (sCD9) and the temporarily waterlogged soils 

(SCDIJ) the negative coefficient suggest that SHRUB BROWSE will decrease in quantity at time 2. 

Conversely in the light textured cambisols (SCD8) more SHRUB BROWSE will be found at time 2. 

The negative coefficient for the hydrophytic perennial shrub type (GVD19) represents very wet 

sites which SHRUB BROWSE does not prefer. The negative coefficient for the moderhumus in 

conifer type ( GVD4) shows that SHRUB BROWSE will decrease in quantity. In growth zone 20 

(GZD20) the negative coefficient suggests that less SHRUB BROWSE will be present at time 2.  

SHRUB BROWSE - 0 

.lfSHRUB BROWSE is not present at time 1, in what quantity will it be present at time 2. 

The ELEV coefficient is negative indicating that as elevation increases, the less SHRUB BROWSE 

will encroach on to the site. In growth zones 2(GZD2), 3(GZD3), GRP_Gz (13(GZD13), 14(GZD14), 

1 5(GZD15) and 1 8  (GZD18)) the coefficients are positive which shows that in these growth zones 

more SHRUB BROWSE will encroach onto a site than in other growth zones. Conversely, in 

growth zones 8(GZD8), 9(GZD9) and 1 0  (GZDIO) the coefficients are negative. The negative 

coefficient for the pure beech type (STDIO_T2) is supported by the behaviour shown for growth 

zones 8, 9 and 10. Beech is a good competitor not allowing for encroachment by the shrub 

species. The positive coefficient for the black pine (STD5_T2) and the oak (STDJJ_T2) stand types 

suggests that SHRUB BROWSE is favoured in these stand types. In the cambisols derived from 

calcareous material (scDio) and the fluvisols along small rivers (SCD21) the positive coefficients 

suggest that encroachment of shrubs is higher. The negative coefficient for one layer stands 

(ssm) shows that there is less encroachment of shrubs in these stands compared to two or 

multilayer stands. The positive coefficient for the shade tolerant herb type (GVDI), the 

thermophilic herb type ( GVD3), the subapline dwarf shrub type ( GVD14) the hydrophytic herb type 

(GVDI9) and the floodplain type (GVD20) shows that these vegetation types support the shrubs that 

make up SHRUB BROWSE. Inversely, the moss types ( GVD6 and GVD7) do not support these 
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species. The positive coefficients for the southeast aspect (ASD4) and the south west aspect (ASD6) 

shows that the species of shrubs listed prefer sunny, drier locations. The A_NOSH_TI variable has a 

negative coefficient suggesting that as the area ofNo BROWSE increases the less SHRUB BROWSE 

will encroach. The change in basal area (c_BA) coefficient is negative suggesting that after 

harvesting more SHRUB BROWSE will be present at time 2, compared to a non harvest scenario. 

RASPBERRY BROWSE- 1 

.lfRASPBERRY BROWSE is present at time 1, in what quantity will it be present at time 2. 

As the percent share of RASPBERRY BROWSE (A_HISH_TI) present at time 1 increases, the positive 

coefficient shows that more RASPBERRY BROWSE will be present at time 2 .  The ELEV coefficient 

is negative indicating that as elevation increases, less raspberry will be present at time 2. This is 

intuitively correct since raspberry is more common at lower elevations. The A_NOSH_TJ variable 

has a negative coefficient suggesting that as the area of No BROWSE increases the less 

RASPBERRY BROWSE will be present at time 2. This is also the case with the variable JUNGIISH_TI 

which also has a negative coefficient. The negative coefficient for the pure Norway spruce stand 

type (srDI_T2) indicates that less raspberry will be present under a spruce stand compared to other 

stand types. Conversely, under pure Scots pine stands (STD4_T2) more raspberry will be found. 

The coefficients for the stagnie cambisols (SCD14), the leptosols (SCD17 and SCDIB) and Fluvisols 

(SCD22) are negative. Leptosols are weakly developed soils, low in nutrients which are 

unfavourable for raspberry. The coefficients for the moderhumus vegetation type (GVD4) and the 

hydrophytic perennial shrub type (GVDI9) are positive showing raspberries preference for the 

conditions in these vegetation types. In growth zone 1 (GZDJ) and 4 (GZD4) the positive 

coefficient suggests that more RASPBERRY BROWSE will be present at time 2. 

RASPBERRY BROWSE- 0 

.lfRASPBERRY BROWSE is not present at time 1, in what quantity will it be present at time 2. 

The ELEV coefficient is negative indicating that as elevation increases, the less RASPBERRY 

BROWSE will encroach. This is intuitively correct since raspberry is more common at lower 

elevations. The STDO_T2 variable indicates ifthe subplot has no trees in the angle count at time 2. 

The positive coefficient shows that if the overstory of a stand is not very dense, more raspberry 
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will encroach onto the site. Similarly, the coefficients for the shade tolerate herb type (GVDI), the 

moderhumus vegetation type (GVD4), the hydrophytic perennial shrub type (GVDI9) and the 

floodplain (Gvmo) are positive showing raspberries preference for the conditions in these 

Vegetation types. In growth zones l (GZDJ), 2(GZD2), 3(GZD3), 4(GZD4), 7(GZD7), l 9(GZD19), and 

2 l(GZD21) the coefficients are positive showing that in these growth zones more RASPBERRY 

BROWSE will encroach onto a site than in other growth zones. In the heavy texture cambisols 

(SCD9), the planosols from loess (SCDJJ) and the temporarily water logged soils (SCDI3) the 

positive coefficient shows that raspberry will encroach more than compared to other soils. In the 

substrate-induced podzols (SCD6), the leptosols (SCDJ7 and SCD18) the chromic cambisols (SCDI9), 

the gleysols (scmo) and the fluvisols along small rivers (SCD21) the negative coefficient shows 

that in these soils less raspberry will encroach. The A_NOSH_TI variable has a negative coefficient 

suggesting that as the area of No BROWSE increases the less RASPBERRY BROWSE will encroach. 

This is also the case represented by the negative coefficients for variables REGEN II (JUNGIISH_Tl), 

OVERSH_T2 (Summation of POLE (STANGSH_T2), MATURE I (BHISH_T2) and MATURE Il (BHJISH_T2 )). 

The change in basal area (c_BA) coefficient is negative suggesting that after harvesting more 

RASPBERRY BROWSE will be present at time 2, compared to a non harvest scenario. 

BLUEBERRY BROWSE - 1 

If BLUEBERRY BROWSE is present at time 1, in what quantity will it be present at time 2. 

The variable logarithm A_HESH_TI has a positive coefficient, which suggests that as the percent 

share of blueberry at time 1 increases, the more blueberry will be present at time 2.  Elevation 

(ELEV) has a positive coefficient, which is intuitively correct, since we expect blueberry to favour 

higher altitudes. The slope coefficient (SLPE) is negative suggesting that as slope increases, the 

less blueberry will stay on the site. The main reason may be that on steeper slopes the sites may 

be dryer. In the pure Norway spruce sites (STDJ_T2) the negative coefficient shows that blueberry 

will decrease in quantity at time 2. The STDO_T2 variable indicates if the subplot has no trees in 

the angle count at time 2 .  The negative coefficient shows that if the overstory of a stand is not 

very dense, blueberry will disappear from the site which, is intuitively correct since blueberry 

prefers shade. The negative coefficient for variable POLE (STANGSH_T2) suggests that although 

blueberry prefers shade, as a pole stand becomes denser, it becomes too dark, even for blueberry. 

The change in basal area (c_BA) coefficient which is positive suggests that after harvesting, less 
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BLUEBERRY BROWSE will be present at time 2, compared to a non harvest scenario. In growth 

region 1 7  (GZD17), less blueberry will stay compared to other growth regions. Ifthe soil group is 

dystric cambisols (SCD2) or the substrate induced podzols (scD6), the less blueberry will be 

present at time 2,  in comparison to other soil types. The coefficients for the shade tolerant and 

moderately moist herb types (GVDJ and GVD2), the moderhumus in conifer stands type (GVD4) the 

competing grass cover type (GVD12), the seep vegetation type (GVD18) and the hydrophytic 

perennial herb type ( GVD19) are all negative. This suggests that if blueberry is present on these 

sites at time 1 ,  it will be less prominent at time 2. 

BLUEBERRY BROWSE- 0 

lfBLUEBERRY BROWSE is not present at time 1, in what quantity will it be present at time 2. 

Elevation (ELEV) has a positive coefficient which is intuitively correct, since we expect blueberry 

to favour higher altitudes. The slope coefficient (SLPE) is negative suggesting that as slope 

increases, the less blueberry will encroach onto the site. The sparse moss ground vegetation type 

( GVD6) is a blueberry type therefore it is expected that more blueberry will encroach onto this 

site. The subalpine dwarf shrub type (GVD14), includes blueberry as a species, therefore, it is 

expected that blueberry will encroach onto this site. This is supported by the positive coefficient. 

The positive coefficients for the northeast aspect (ASD2) and the northwest aspect (ASD8) shows 

that blueberry prefers shaded locations. The negative coefficient for the mixed deciduous stand 

type (STD4J_T2) indicates less blueberry will encroach onto a site when it is mixed deciduous. The 

percent share ofREGEN I at time 1 ,  squared, (JUNGISH_TI) has a negative coefficient. This shows 

that as the percent share ofREGEN I increases, the less blueberry will encroach onto the site. This 

shows that blueberry is in direct competition with REGEN I and is not the better competitor. The 

STDO_T2 variable indicates if the subplot has no trees in the angle count at time 2. The positive 

coefficient shows that if the overstory of a stand is not very dense, more blueberry will encroach 

onto the site than if it is dense. The coefficient for the moderhumus type (GVD4) is negative 

suggesting that less blueberry will encroach onto this vegetation type compared to others. 
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ERICA BROWSE - 1 

If ERICA BROWSE is present at time 1, in what quantity will it be present at time 2. 

The variable A_ERSH_Tl has positive coefficient, which suggests that as the percent share of ERICA 

BROWSE at time 1 increases, the more Erica will be present at time 2. The negative coefficient 

for water regime (WTRG) shows that as the site becomes wetter the less ERICA BROWSE will stay 

on the site. Coefficients for the variable representing growth zones 1 (GZDJ) and 20 (GZD20) are 

negative, showing that less ERICA BROWSE will be present at time 2.  Conversely, in growth 

zones 1 4  (GZD14) and 17  (GZD1 7) more ERICA BROWSE will appear. The Erica ground vegetation 

type (GVD15) is an "Erica" type therefore it is expected that more Erica will appear compared to 

other ground vegetation types. More Erica will also appear in the Ca/luna ground vegetation 

type (GVDJO) . The A_NOSH_TJ variable has a negative coefficient suggesting that as the area ofNo 

BROWSE increases the less ERICA BROWSE will be present at time 2. This is also the case with 

the variable JUNGIISH_Tl, which also has a negative coefficient. 

HERB BROWSE - 1 

If HERB BROWSE is present at time 1, in what quantity will it be present at time 2. 

The variable logarithm A_KRSH_TJ has a positive coefficient, which suggests that as the percent 

share of HERB BROWSE at time 1 increases, the more HERB BROWSE will be present at time 2. 

The positive coefficient for the water regime (WTRG) shows that as sites become wetter there will 

be more HERB BROWSE at time 2. The positive coefficients for the mixed coniferous and 

deciduous types (STD40_T2 and STD4J_T2) shows that more HERB BROWSE will appear in these 

stand types compared to the others. The spodi-dystric cambisol soil group (sCD4) has a negative 

coefficient suggesting that the herbs in the HERB BROWSE class do not favour this soil type. The 

negative coefficients for the moss ground vegetation types (GVD5 and GVD6) , the Avene/la type 

(GVDB) and the Erica type (GVD15) show that herbs, ifpresent in these types at time 1 ,  will be less 

prominent at time 2, compared to other types. In growth zones 1 and 4 (GZDJ and GZD4) the 

coefficients are also negative. For growth zones 9(GZD9), 10  (GZDJO), 1 2  (GZD12) and 17 (GZD17) 

coefficients are positive, showing that more herbs will be present at time 2 compared to other 

zones. The positive coefficient for the quadratic mean diameter at time 2 (QMD_T2) shows that as 

stands become older, the more HERB BROWSE will be found on these sites. The negative 
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coefficient for percent share of REGEN I (JUNGISH_TI) and REGEN II (JUNGIISH_Tl) at time 1 shows 

that as the amount of these two growth classes increases, the less HERB BROWSE will be present 

at time 2.  

HERB BROWSE- 0 

If HERB BROWSE is not present at time I, in what quantity will it be present at time 2. 

The positive coefficients for the mixed deciduous type (STD4J_T2) shows that more HERB BROWSE 

will encroach in this stand type compared to the others. In growth zone 1 (GZDI) the coefficient is 

also negative suggesting that less HERB BROWSE will encroach onto a site. The coefficients for 

the shade tolerant herb type (GVDI), the moderately moist herb type (GVD2), the pasture (GVDI6), 

the seep vegetation type (GVDIB) and the hydrophytic perennial shrub type (GVDI9) are all 

positive. These are either herb types or areas that herbs favour, therefore, it is expected that 

more herbs will encroach onto these sites. Conversely, the two moss types ( GVD5 and GVD6) have 

negative coefficients showing the dislike of these types by herbs. The A_NOSH_TJ variable has a 

negative coefficient suggesting that as the area of No BROWSE increases the less HERB BROWSE 

will encroach onto a site. The coefficients for the eutric cambisols (scDJ), the stagnie gleysols 

(SCD14), the leptosols (SCDJ7 and SCDIB), the chromic cambisols (SCDI9), and the fluvisols (SCD21 

and SCD22) are all positive showing that HERB BROWSE encroachment is favoured on these soil 

types. The change in basal area (c_BA) coefficient is positive suggesting that after harvest less 

HERB BROWSE will encroach at time 2, compared to a non harvest scenario. The positive 

coefficient for the quadratic mean diameter at time 2 (QMD_T2) shows that as stands become 

older, the more herbs will encroach. 

FERN BROWSE - 1 

If FERN BROWSE is present at time I, in what quantity will it be present at time 2. 

The variable logarithm A_FASH_TJ has a positive coefficient which suggests that as the percent 

share of FERN BROWSE at time 1 increases, the more FERN BROWSE will be present at time 2. The 

positive coefficient for water regime (WTRG) shows that as the site becomes wetter the more FERN 

BROWSE will appear on the site. Elevation (ELEV) has a positive coefficient, which suggests that 

FERN BROWSE favours higher altitudes. The negative coefficient for the southeast (ASD4), south 
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(ASD5) and the southwest (ASD6) facing slopes shows that FERN BROWSE dislikes hotter, drier 

aspects. From the positive coefficient of the moderhumus ground vegetation type ( GVD4), it can 

be seen that fems prefer this vegetation type. Conversely, the more competitive, grass cover type 

(GVD12) has a negative coefficient showing the fems inability to compete with grasses. For 

growth zones 1 (GZDI), 4 (GZD4), 8 (GZD8) and 1 2  (GZDI2) the coefficients are positive showing 

that if fems are present at time 1 in these zone, the more FERN BROWSE will be expected at time 

2 compared to other zones. Conversely, for growth zone 17  (GZDI7) the less FERN BROWSE will 

be present at time 2.  The positive coefficient for the quadratic mean diameter at time 2 (QMD_T2) 

shows that as stands become older, the more FERN BROWSE will appear at time 2.  The old 

growth stand type (STARKSH_T2) also has a positive coefficient showing the preference of older 

Stands by FERN BROWSE. 

FERN BROWSE - 0 

If FERN BROWSE is not present at time 1, in what quantity will it be present at time 2. 

The positive coefficient for water regime squared (WTRG) shows that as the site becomes wetter 

the more FERN BROWSE will encroach onto a site. The positive coefficient for the pure Norway 

spruce type (STDI_T2) indicates that FERN BROWSE prefers this type over other types. The positive 

coefficient for the north (ASDJ), northeast (ASD2) and the northwest (ASD8) facing slopes shows 

fems preference for shady aspects. The positive coefficient for the quadratic mean diameter at 

time 2 (QMD_T2) shows that as stands become older, the more FERN BROWSE will encroach onto 

a site. From the positive coefficient of the moderhumus ground vegetation type ( GVD4), the 

moderately moist herb type (GVD2) and the shrub type (GVDI9), it can be seen that more FERN 

BROWSE will encroach onto these sites compared to other types. The coefficients for the stagnie 

gleysols (scnu) and the spodi-dystric cambisols (SCD4) are positive indicating that more FERN 

BROWSE will encroach onto sites compared to others. The coefficients for growth zone 8 (GZD8), 

1 1  (GZDJJ) and 12 (GZDI2) are all positive. This indicates that in these growth zones more FERN 

BROWSE will encroach. Conversely, in growth zones 1 (GZDJ), 3 (GZD3), 1 8  (GZDIB) and 20 

( GZD2o) the opposite is true. The square of the No BROWSE (A_NOSH_TJ ) variable has a negative 

coefficient suggesting that as the squared percent area of No BROWSE increases the less FERN 

BROWSE will encroach onto a site. 
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GRASS - 1 

Jf GRASS BROWSE is present at time 1, in what quantity will it be present at time 2. 

The logarithm A_GRSH_Tl has a positive coefficient which shows that as the percent share of 

grass at time 1 increases, the more grass will be present at time 2. Elevation (ELEV) has a positive 

coefficient, which suggests that grass is a better competitor at higher elevations. The negative 

coefficients for REGEN II (JUNGIISH_TI) and Pole (STANGSH_T2 ) shows that as the density of these 

growth classes increases, the less grass will stay on the site. The change in basal area (c_BA) 

coefficient is negative suggesting that after harvesting more grass will be present at time 2, 

compared to a non harvest scenario. The positive coefficient for the leptosol soil group (SCDI7) 

shows grasses strength as a competitor on poor sites when there is less competition from above. 

The negative coefficient for the eutric cambisols (SCD3) shows that on very basic sites, grass is 

less of a competitor. In the moist herb vegetation type ( GVD2), the thermophilic herb type ( GVD3), 

the Avenella type (GVD8), Sphagnum-Vaccinium-Avenella type (GVDll), the grass type (GVDI2), 

the depletion types (GVDI3), the Erica type (GVDI5), the pasture type (GVDI6), the seep vegetation 

type (GVDI8) and the floodplain type (GVD20) the coefficients are positive suggesting that grass is 

a good competitor in these types compared to other vegetation types. In growth zone 1 (GZDI) the 

coefficient is positive indicating that grasses compete weil in this zone. Conversely, in growth 

zone 1 1  (GZDll), 1 6  (GZDI6), 1 8  (GZDIB) and 20 (GZD20) grasses are not as competitive as shown 

by the negative coefficient. 

GRASS - O  

Jf GRASS BROWSE is not present at time 1, in what quantity will it be present at time 2. 

Elevation (ELEV) has a positive coefficient which suggests that grass will encroach more at higher 

elevations. The STDO_T2 variable indicates the subplot has no trees in the angle count at time 2. 

The positive coefficient shows that if the overstory of a stand is not very dense, more grass will 

encroach onto the site. In pure Norway spruce stands (STDI_T2) and in the pure larch stands 

(STD3_T2), the positive coefficients show that more grass will encroach in these stand types 

compared to other types. Conversely, in pure beech stand types (STDIO_T2) the negative 

coefficient shows that less grass will encroach onto a site. The negative coefficients for 

logarithm REGEN II (JUNGIISH_TIJ and logarithm Pole (STANGSH_T2 ) shows that as the amount of 
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these growth classes increases, the less grass will encroach onto a site. The square root of the 

A_NOSH_TJ variable has a negative coefficient suggesting that as the area ofNo BROWSE increases 

the less GRASS BROWSE will encroach. The change in basal area (c_BA) coefficient is negative 

suggesting that after harvesting more grass will encroach onto a site, compared to a non harvest 

scenario. In the Avenella (GVD8), the competing grass (GVDI2), the pasture (GVD16) and the seep 

(GVDI8) ground vegetation types, the coefficients are positive as expected. In the moderhumus 

type ( GVD4) the coefficient is negative showing grasses less competitive nature in this vegetation 

type. In growth zone 1 (GZDI) the coefficient is positive showing that more grass will encroach in 

this zone compared to other growth zones. In growth zone 17  (GZD17) the opposite is true. 

5.3 Otber Uses for the Models Developed 

The wildlife browse classes according to the ANFI, were chosen because of their applicability to 

a range of wildlife species, not just roe deer. Although the models in this study were developed 

implicitly to meet the objective of predicting the future habitat suitability indices for roe deer, 

there is nothing to suggest that the models are not valuable in the management of other species 

like red deer or chamois. Use of these models for the management of other wildlife resources is 

certainly possible. 

Species response models, as discussed earlier in section 1 . 1 ,  are developed on data representing 

one moment in time. Therefore, through the use of large samples, a relationship, using 

environmental gradients, such as elevation, slope, aspect and the forest cover type can be made 

with the understory vegetation. The assessment of the future understory vegetation is made 

solely on the future forest stand projected by the growth model, since elevation, slope and aspect 

are not dynamic. Figure 5-la illustrates this methodology. This methodology is practical when 

the sole intention is to obtain a map of the future distribution of a species. However only broad 

statements conceming vegetation dynamics can be made. The logistic models developed in this 

study are complex species response models, such that they take into consideration the 

presence/absence and abundance of the species at time 1 and are sensitive and responsive to 

changes in the forest structure. More specifically, these models take into consideration "how" the 

vegetation changes. Figure 5-1 b illustrates this methodology. Therefore, as the future unfolds 

through simulation, the dynamics of the vegetation is modelled one step at a time. At each step, 
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the condition of the vegetation at time I is known. Vegetation prevalence will change upwards 

and downwards as the forest stand undergoes change. The more severe the changes the greater 

the change to the vegetation will be. To test this in application, one could follow two different 

management strategies which result in the same future forest (time 2). The "species response 

models" would be deterministic, since prior management does not effect the prediction of future 

understory vegetation. Using the models developed in this study, one would expect the future 

understory vegetation to be different. 

For these reasons, the models developed in this study are appropriate to study the effects of 

forest restoration, but not only with respect to roe deer. The future effects of restoration 

strategies on the understory vegetation could provide vital information for many different 

disciplines, not only for wildlife ecologists. 

a) Traditions/ Methodology 

r � - - -- --- --- - - -- - -------

i Current Forest i Growth Model 
l ·----------------------------

: Time 1 : ,_ ----------------- --- --' 

b) New Moclelling Methodology 

Current Forest 

Time 1 

Future Forest 

Time 2 

Future Forest 

Time 2 

Preclicted Future 

Understory Vegetation 
Tlme 2 

Predicted Future 
.------'------1...• Understory Vegetation 

Time 2 

Current Undarstory t---------' 
Vegetation Time 1 

Figure 5-l : a) illustrates the inputs that are used in predicting future understory vegetation using 
traditional methodologies such as species response modelling. b) illustrates the inputs 
used in this study. 

Abbildung 5-l :  a) Zeigt die Größen, die traditionell zur Schätzung der Vegetation der Kraut- und Strauchschicht 
verwendet werden. b) Zeigt die Größen, die in dieser Studie verwendet werden. 

Another promising use for the models developed in this study is for forest practitioners. For 

example the models could be used in forest management. The competition between trees, 

understory species and forest regeneration is well known. Forest practitioners, using simulation, 



1 1 1  

could identify and pursue those management strategies which decrease competition with 

regeneration. Another example is if browsing of regeneration is a problem, management 

strategies which create understory vegetation in areas away from the regeneration areas, easing 

the negative effects of ungulate browsing. Forest practitioners should view the models as a tool 

that could be used to demonstrate the pros and cons of different management strategies. 

In the context of Austrian growth modelling, there is another potential use for the growth class 

models, REGEN I and REGEN II. There is tremendous effort being made in modeHing the growth 

of regeneration. The reason for this is, that most individual tree models have a minimum age or 

size of a tree before it can be simulated. PROGNAus for example begins at a 5 .0cm diameter at 

breast height. Up until this size, another model is required to provide PROGNAus with the 

information concerning ingrowth, those trees crossing the 5.0cm threshold. The current approach 

in PROGNAus to determine ingrowth, is to use the method posed by Ledermann et al. (In 

preparation). This modeHing approach, determines the probability of trees in a plot appearing 

above the minimum diameter at breast height (DBH) of 5.0cm. If it is determined that trees will 

appear, their number is predicted using logarithmic regression, their species are predicted using a 

logit-function and their DBHs are predicted using a weibull distribution function. These models 

use basal area, crown competition factor, quadratic mean diameter, soil type, elevation, slope, 

the species of the overstory and the presence/absence of REGEN II at time 1 as inputs. However 

there is no model to estimate if REGEN II is present or absent in the future, once projections 

begin. The current work centres around determining if there is more than 1 0% basal area that is 

less than 10.4cm (upper threshold for the Regen II class). With some small modifications, for 

example, it should be possible to refit the REGEN I and REGEN II models using only a select set of 

variables, and to predict the probability of future REGEN ll for use with the ingrowth models. 

This should improve estimates of ingrowth. There is also the potential to refit the ingrowth 

model with information regarding the percent share of REGEN II at time 1 ,  given that this study 

quantifies this value. Also, there is an opportunity to see if the addition of information about 

REGEN I could improve the ingrowth models. The efforts to refit them would be interesting. 

The possible uses for the models developed, as presented above, are to say the least, excellent 

opportunities to further the research in three entirely different disciplines: vegetation modelling, 

wildlife habitat modeHing and growth modelling. 
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5.4 Future Model Development 

During the development of the models and the modeHing strategy used in this study, there was 

an opportunity to evaluate both the strengths and weaknesses of the models and modeHing 

strategies. The most obvious Iimitation, which could have been significantly improved in the 

models was the class structure of the wildlife browse classes. The 1 0% classes are appropriate, 

since it surpasses the needed resolution for most wildlife applications. However, during the 

process of fitting the models, there were many instances where illogical outcomes occurred. An 

example is the case where the observed appearance ofblueberry went from 0% at time 1 to 70%, 

in a 5 year period. The model predicted that at time 2, there was no blueberry. This is possible in 

extreme cases, but normally, we would not expect blueberry to encroach onto a site with such 

vigour. In fact, it is almost certain, that blueberry was on the site at time 1 .  The problern is the 

resolution of the inventory. The 10% classes are not sensitive to the low values. In other 

vegetation inventories, used for wildlife purposes, there are classes that allow for the 

identification of single plants and species with low percentages. This would have been very 

useful in the modeHing process. Just the presence of a plant, under the right conditions, could be 

the difference in the model predicting correctly. 

Another interesting problern deals with the No BROWSE, wildlife browse class. It was used in 

the models as a measure of stand density, and was an important finding, even though the ANFI 

had a similar variable, the "degree of closure" (Schlussgrad). This variable measured the total 

stand closure, including the shrub layers. However, this variable could not be used for two 

reasons. First, it was not available in the area where the model validation was to be done and 

second, the degree of closure represented the future expected closure of the REGEN I and REGEN 

II classes, not the current. In the early stages of modelling, it was a dominant variable and was 

reluctantly removed. What is needed in the inventory though, is a variable that measures the 

density ofthe stand at 3 vertical points, perhaps at 0.7m, 1 .3m and 3.0m. This could significantly 

improve the models. 
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6 CONCLUSIONS 

The main objective oftbis study was to develop empirical understory vegetation models to aid in 

the prediction of future wildlife habitat suitability indices for roe deer as proposed by Reimoser 

and Zandl (1 994). This objective was achieved through: 

• the development of 26 logistic regression models which determine the probability of the 

different understory vegetation types being present or absent in the future. 

e the development of 25 logarithmic regression models which quantify the future vegetation, if 

the logistic model predicts that it will be present in the future. 

The major conclusions that can be drawn from this study can be divided into two categories, 

those that relate to the technical aspects of model development and those that relate to the 

significance ofthe models developed. 

From a technical perspective, the use of a two model hierarchical modeHing strategy functioned 

weil. A logistic model was used to predict the probability of vegetation being present in the 

future. If it was determined to be present in the future, a logarithmic model was used to quantifY 

it. The logistic models modelled the simple present or absent case, therefore the model fits were 

good. It was also found, that in application, the best cutoff value was at a probability level where 

the ratio, between those observations predicted to be present in the future over the total number 

of observations, was the same as the a priori probability. This was important because this 

distribution was essential in application and was a criteria in evaluating model performance. The 

logarithmic models were only needed if the logistic model determined that the vegetation type 

was present in the future. This meant that the logarithmic model could be fit on a reduced 

dataset. It was found that the best fits for the logarithmic models were obtained when a reduced 

dataset, made up of the "correctly predicted" observations from the logistic model, were used 

for model fitting. This was, firstly, because the Observations with the greatest residuals were 

removed by the logistic model and secondly, because the models fit using this dataset, had 

intercepts closer to zero. 
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From the logistic modeHing perspective, there is difficulty in choosing one model over another. 

The Hosmer and Lerneshow test statistic, c ,  that is useful in evaluating goodness-of-fit cannot, 

however, be used to determine if one model performs better than another, when both models fit. 

In these cases, the area under the receiver operating characteristics (ROC) curve can be used. 

The area below ROC curves also allow for logistic regression models from other studies to be 

compared, since they measure a logistic models ability to discriminate, independent of species 

prevalence and the cutoffvalue. 

The models developed in this study show that understory vegetation is not independent of its 

surroundings. This means that potentially, all vegetation types could be modelled. Bach of the 

models developed are unique in form, which shows that each vegetation type is unique in the 

factors that dictate its existence. The fact that the paired logistic and the logarithmic models 

were made up of similar coefficients, with the same sign (+ or -), shows that the factors that 

determine probability of vegetation being present or not, in the future, also dictate how much of 

that vegetation will be present. From this study, the variables representing the status of the 

vegetation at time 1 were dominant in the models. This suggests that in general, vegetation is 

stabile, such that in a 5 or 6 year period, major changes in vegetation are not expected. 

However, large changes in vegetation can be expected if there are significant changes in its 

surrounding environment. This is supported by the dominance of the explanatory variables, 

change in basal area and change in quadratic mean diameter. These variables show that much of 

the vegetation change is driven by changes in the overstory density. Thus, many ofthe traditional 

forest management practices such as clear cutting and thinning, will have an effect on understory 

vegetation. One therefore can conclude that there will be an impact on the vegetation if 

restoration measures are pursued, and if there are vegetation changes, there will be an impact on 

ungulates like roe deer. These statements are not new, it has been known for a long time that 

these relationships exists. Although this may be true, until now, no one has taken advantage of 

this information in modeHing understory vegetation. The information regarding the condition of 

the vegetation from time 1 as weil as the change in the overstory forest are key pieces of 

information needed to successfully model understory vegetation change. 
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The primary use o f  the models developed in this study was to aid in detennining the impacts of 

management strategies, like restoration on roe deer. In application, this can be done by first 

predicting the future forest stand conditions, under some proposed management strategy, using a 

growth model. Then using this future forest stand infonnation, to predict the future understory 

vegetation using the models developed in this study. These understory vegetation predictions, 

along with the growth model predictions, can then be translated into the parameters which make 

up the habitat suitability indices. Through simulation, different management strategies can be 

tested and evaluated. In the end, a management strategy, that results in an acceptable balance 

between management objectives, even those that are conflicting, can be found and implemented. 
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7 SUMMARY 

Forest ecosystem restoration will not only change the vegetative composition of the forest stand 

but also the composition and dynamics of the understory herb, forb and shrub layers. These 

changes will effect the use ofthese stands by ungulates by altering their habitat. In order to meet 

the requirements of sustainable resource management, it is necessary to assess and understand 

the future effects of forest management practices such as restoration. In Austria, Habitat 

Suitability Indices (HSI) for roe deer have been developed by Reimoser and Zandl (1 994). 

These indices, for a given moment in time, measure a forest stands predisposition for use by roe 

deer. One method of deterrnining the effects of restoration is to predict and evaluate future 

wildlife habitat indices, under different restoration strategies. For forest stands over a given 

diameter, future forest overstory conditions can be predicted using a growth model. However, 

this inforrnation is insufficient to calculate the future habitat suitability indices. The objective of 

this project was to develop empirical vegetation models to predict the change of understory 

vegetation over time. The vegetation types modelled are those which are needed to calculate the 

future HSI for roe deer. 

Using the Austrian National Forest Inventory, a hierarchical, two model approach was used. 

First, using logistic regression, the probability of the vegetation type being present or absent in 

the future was predicted. Then, if the vegetation type was predicted to be present in the future, it 

was quantified using logarithmic regression. During the fitting of the models, several technical 

aspects concerning the model input datasets were tested. It was found that for the logarithmic 

models, a reduced dataset, made up of the correctly predicted observations from the logistic 

models had better fits and predicted distributions closer to the observed distributions. It was also 

found that the best cutoff value, needed for the logistic models, was the probability where the a 

priori probability was found in the predicted data. The modeHing strategy presented is unique 

because; 1 )  it is modeHing the change of vegetation over time, and 2) it incorporates variables 

from both the current forest and the future forest, understanding that in application, the future 

forest stand can be predicted using a growth model. A total of 26 logistic models and 25 

logarithmic models were fit. It was found that the current condition of the vegetation type was an 

important explanatory variable in predicting its future condition. It was also found that changes 
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in the forest overstory density, represented by explanatory variables such as change in basal and 

change in quadratic mean diameter were also important in describing the change in the 

understory vegetation over time. Relating these results to forest restoration, it can be concluded 

that forest restoration will have a large impact on understory vegetation, which will be translated 

into a large impact in roe deer habitat. In application, the models developed in this study can be 

used in conjunction with a growth model, to evaluate different management strategies by predict 

future understory vegetation and future HSI. 
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8 ZUSAMMENFASSUNG 

Waldsanierungsmaßnahmen ändern nicht nur die Zusammensetzung der Baumschicht, sondern 

auch die Artenzusammensetzung und die Dynamik der bodennahen Waldvegetation bis zur 

Strauchschicht Diese Änderungen beeinflussen jedoch die Habitatqualität und damit die 

Inanspruchnahme der Bestände durch Wildtiere. Für die nachhaltige Bewirtschaftung der 

natürlichen Ressourcen ist es notwendig, die Auswirkungen waldwirtschaftlicher Maßnahmen, 

insbesondere solcher zur W aldsanierung, auf die Habitatqualität zu verstehen und 

prognostizieren zu können. In Österreich sind Habitat-Qualitätsindices für Rehwild von 

Reimoser und Zandl (1 994) entwickelt worden. Diese Indices beschreiben - für einen 

bestimmten Zeitpunkt - die Verwendbarkeit des Habitats für Rehwild. Eine Fragestellung bei der 

Waldsanierung ist die Einschätzung künftiger Habitatqualitäten unter unterschiedlichen 

Sanierungsstrategien. Für Bestände, die Bäume über einer vorgegebenen Kluppschwelle 

enthalten, kann der Zustand dieses Teils der Baumschicht mit Hilfe von 

Waldwachstumsmodellen prognostiziert werden. Diese Information genügt aber nicht, um die 

künftige Habitatqualität für Wildtiere abschätzen zu können. Im Rahmen dieser Arbeit sollten 

daher empirische Vegetationsmodelle entwickelt werden, mit deren Hilfe auch die Änderung der 

bodennahen Waldvegetation über der Zeit dargestellt werden kann. Die hier modellierten 

Vegetationstypen sind jene, die zur Berechnung der Habitatqualitätsindices fiir Rehwild 

notwendig sind. 

Mit den Daten der Österreichischen Waldinventur wurde ein Modellansatz gewählt, der 

hierarchisch zwei Modelle aneinander koppelt. Zunächst wird mittels logistischer 

Regressionsmodelle die Wahrscheinlichkeit dafiir, dass ein bestimmter Vegetationstyp nach 

einer vorgegebenen Periode vorhanden ist, modelliert. Anschließend wird für den Fall, dass der 

Vegetationstyp vorhanden ist, seine Flächendeckung mittels logarithmischer Regression 

quantifiziert. Im Laufe des Parametrisierens der Modelle wurden einige technische Aspekte 

bezüglich des verwendeten Datenmaterials untersucht. Dabei ergab sich, dass für die 

Quantifizierungsmodelle die Verwendung nur jener Probeflächen, auf denen der entsprechende 

Vegetationstyp vorhanden war, zu besseren Modellen im Sinne der Restvarianz und 

systematischer Abweichungen von den Beobachtungen fiihrte. Für die logistischen Modelle war 
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es notwendig, einen Schwellenwert der vorhergesagten Wahrscheinlichkeit zu finden, ab der die 

Entscheidung getroffen wird, dass der Vegetationstyp vorhanden ist. Als günstigster 

Schwellenwert ergab sich jener, der in der a priori Wahrscheinlichkeit fiir das Auftreten des 

Vegetationstyps resultierte. Dieser Modellansatz ist insofern neu, als 1 )  die 

Vegetationsentwicklung über der Zeit mittels eines dynamischen Modells beschrieben wird, 2) 

unabhängige Variable, die den Waldzustand zu Beginn und am Ende der Zuwachsperiode 

beschreiben, verwendet werden, wobei letztere mittels eines vorhandenen 

Waldwachstumssimulators prognostiziert werden. Insgesamt wurden 26 logistische und 25 

logarithmische Modelle parametrisiert. Dabei wurde gefunden, dass der Vegetationszustand zu 

Beginn des Prognosezeitraums einen hohen Prognosewert für den künftigen Vegetationszustand 

hatte. Darüber hinaus waren Änderungen in der Baumschicht (über der Kluppschwelle), wie z.B. 

der Grundflächendichte und des Mitteldurchmessers auch von großer Bedeutung für die Güte der 

Prognose. 

Nimmt man an, dass Eingriffe in die Baumschicht ein wichtiger Teil von Sanierungsmaßnahmen 

sind, dann kann man daraus schließen, dass Waldsanierungsmaßnahmen einen großen Einfluss 

auf die bodennahe Waldvegetation und damit auch auf die Habitatqualität fiir Rehwild haben. In 

der Anwendung können die hier entwickelten Modelle gemeinsam mit einem 

Waldwachstumssimulator dazu dienen, verschiedene forstwirtschaftliche Maßnahmen in ihrer 

Auswirkung auf die bodennahe Waldvegetation und die künftige Habitatqualität zu evaluieren. 
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10 APPENDIX A 

Table A - 1: The plot descriptors, by plot descriptor class, and their associated variable names used during 
modelling. 

Tabelle A - 1: Die Flächenmerkmale der Österreichischen Waldinventur und ihre Variablen-bezeichnungen. 

Plot Descriptor Plot Descriptor Variable Name 
Class 

Logistic Logaritlimic 
(O n (%) 

GROWTH CLASS REGEN I JUNG/ T2 JUNGISH T2 
REGEN il JUNGll T2 JUNGIISH T2 
REGEN I! - BROADLEA VED NIA BL JUNGIISH T2 
REGEN II - LARCH NIA LA JUNGllSH T2 

BROWSE CLASS NO BROWSE A NO T2 A NOSH T2 
CONJFER BROWSE A ND T2 A NDSH T2 
DECIDUOUS BROWSE A LA T2 A LASH T2 
SHRUB BROWSE A ST T2 A STSH T2 
RASPBERRY BROWSE A Hl T2 A HJSH T2 
BLUEBERRY BROWSE A HE T2 A HESH T2 

ERJCA BROWSE A ER T2 A ERSH T2 

HERB BROWSE A KR T2 A KRSH T2 
FERN BROWSE A FA T2 A FASH T2 
GRASS BROWSE A GR T2 A GRSH T2 
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Figure A - 1: The distribution of the subplots within the No Browse class (!arge image) compared to the distribution 
ofall the subplots used in model development (srnall irnage). 

Abbildung A - 1 :  Verteilung aller Probeflächen ohne Äsung (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 2: The distribution ofthe subplots within the Conifer Browse dass (!arge image) compared to the 
distribution of all the subplots used in model development ( small image ). 

Abbildung A - 2: Verteilung aller Probeflächen mit Nadelbaumäsung (großes Bild) im Vergleich zur Verteilung 
aller Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 3 :  The distribution of the subplots within the Deciduous Browse class (large image) compared to the 
distribution ofall the subplots used in model development (small image). 

Abbildung A - 3: Verteilung aller Probeflächen mit Laubbaumäsung (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 4: The distribution ofthe subplots within the Shrub Browse class (large irnage) cornpared to the 
distribution ofall the subplots used in model development (srnall irnage). 

Abbildung A - 4: Verteilung aller Probeflächen mit Sträuchern (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 5: The distribution of the subplots within the Raspberry Browse class (large image) co:rnpared to the 
distribution of all the subplots used in model development ( small image ). 

Abbildung A - 5: Verteilung aller Probeflächen mit Himbeere (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 6 :  The distribution of the subplots within the Blueberry Browse class (!arge image) compared to the 
distribution of all the subplots used in model development (small image ). 

Abbildung A - 6: Verteilung aller Probeflächen mit Heidelbeere (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 7 :  The distribution o f  the subplots within the Erica Browse class (large irnage) compared to the 
distribution of all the subplots used in model development ( small image ). 

Abbildung A - 7: Verteilung aller Probeflächen mit Erika (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 8: The distribution of the subplots witbin the Herb Browse class (!arge irnage) compared to the 
distribution of all the subplots used in model development ( srnall irnage ). 

Abbildung A - 8: Verteilung aller Probeflächen mit Kräutern (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 9: The distribution of the subplots within the Fern Browse class (large image) compared to the 
distribution of all the subplots used in model development ( small image ). 

Abbildung A - 9: Verteilung aller Probeflächen mit Farnen (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Figure A - 10: The distribution ofthe subplots within the Grass Browse class (!arge image) compared to the 
distribution of all the subplots used in model development (small image). 

Abbildung A - 1 0: Verteilung aller Probeflächen mit Gräsern (großes Bild) im Vergleich zur Verteilung aller 
Probeflächen, die zur Modellerstellung verwendet wurden (kleines Bild). 
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Table A - 2: The ANFI Growth Class names, their inventory code, modeHing variable name for both time 1 and time 
2, a short description and the number of subplots represented by each growth class. 

Tabelle A - 2: Die Wuchsklassen der Österreichischen Waldinventur, ihre Variablenbezeichnungen zu den 
Zeitpunkten t l  und t2, und die Anzahl der Probepunkte pro Wuchsklasse. 

Code Variable Name Variable Name Time Growth Class Name Description No. Subplots 
Time 2 1 - Time 1 

20 JUNGJSH_Tl JUNGJSH_T2 REGEN ! Regeneration to 1.3m height 1211 

N/A BL _JUNGISH _Tl BL_JUNGISH_T2 REGEN I - Broadleaved Regeneration N/A 
BROADLEA VED from 1.3m to 10.4cm DBH 

N/A LA_JUNGISH_Tl LA_JUNGISH_T2 REGEN I - LARCH Larch Regeneration from N/A 
1.3m to 10.4cm DBH 

30 JUNGJJSH_Tl JUNGJISH_T2 REGEN ll Regeneration from 1.3m to 8653 
10.4cm DBH 

N/A BL_JUNGIJSH_Tl BL_JUNGIISH_T2 REGEN li - Broadleaved Regeneration N/A 
BROADLEA VED from 1.3m to 10.4cm DBH 

N/A LA_JUNGIISH_Tl LA _JUNGIISH_ T2 REGEN I! - LARCH Larch Regeneration from N/A 
1.3m to 10.4cm DBH 

40 STANGSH_Tl STANGSH_T2 POLE Trees 10.S to 20.4cm DBH 8673 

50 BHISH_Tl BHJSH_T2 MATURE ! Trees 20.5 to 3S.4cm DBH 8525 

60 BHIISH_Tl BHIISH_T2 MATUREil Trees 35.5 to 50.4cm DBH 2840 

70 STARKSH_Tl STARKSH_T2 ÜLD GROWTH Trees greater than SO. Sem 330 
DBH 

Table A - 3: The ANFI Wildlife Browse Class names, their inventory code, modeHing variable name for both time 1 
and time 2 and the number of subplots represented by each wildlife browse class. 

Tabelle A - 3: Die Wildäsungstypen der Österreichischen Waldinventur, ihre Variablenbezeichnungen zu den 
Zeitpunkten tl und t2 und die Anzahl der Probepunkte pro Wildäsungstyp. 

Code Variable Name Variable Name Browse Class Name No. Subplots -
Time l Time 2 Time 1 

0 A_NOSH_Tl A_NOSH_T2 No BROWSE 12789 

1 A_NDSH_TJ A_NDSH_T2 CONIFER BROWSE 6308 

2 A_LASH_TJ A_LASH_T2 DECIDUOUS BROWSE 3045 

3 A_STSH_Tl A_STSH_T2 SHRUB BROWSE 1897 

4 A_HISH_Tl A_HISH_T2 RASPBERRY BROWSE 1806 

5 A_HESH_Tl A_HESH_T2 BLUEBERRY BROWSE 5584 

6 A_ERSH_Tl A_ERSH_T2 ERJCA BROWSE 444 
7 A_KRSH_TJ A_KRSH_T2 HERB BROWSE 10985 

8 A_FASH_TJ A_FASH_T2 FERN BROWSE 2852 

9 A GRSH Tl A GRSH T2 GRASS BROWSE 11028 
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Table A - 4: The species groups used in the analysis, their modeHing variable name and the number of subplots 
represented by each species group. Where; Pure: > 80% of one species, mixed coniferous: coniferous component > 
50%, mixed deciduous: deciduous component > 50%. 

Tabelle A - 4: Die verwendeten Mischungstypen, ihr Variablenname und die Anzahl der Probepunkte pro 
Mischungstyp. Reinbestand: > 80% von einer Baumart, Nadelholzmischbestand: >50% Nadelholz, 
Laubholzmischbestand: >50% Laubholz. 

Variable Name Variable Name Species Group No. Subplots -
Time 1 Time 2 Time 1 

STDO_Tl STDO_T2 No TREES IN ANGLE COUNT 3087 

STDI_Tl STDI_T2 NORWAY SPRUCE (PICEA AB/ES, L. KARST ) 6393 

STD2_Tl STD2_T2 WffiTE FIR (ABIES ALBA MILL.) 162 

STD3_Tl STD3_T2 EUROPEAN LARCH (LARIX DECIDUA MILL.) 364 

STD4_TJ STD4_T2 SCOTS PINE (PINUS SYLVESTRIS L.) 591 

STD5_Tl STD5_T2 BLACK PINE (PINUS NIGRA ARNOLD) 116 

STD6_Tl STD6_T2 STONE PINE (PINUS CEMBRA L.) 60 

STDJO_Tl STDIO_T2 BEECH (FAGUS SILVATICA L.) 608 

STDJJ_Tl STDII_T2 ÜAK (QUERCUS SPP.) 142 

STD40_Tl STD40_T2 MIXED CONIFEROUS 4584 

STD41 Tl STD41 T2 MIXED DECIDUOUS 1969 

Table A - 5 :  The ANFI aspect classes, their modeHing variable name, inventory code and the number of subplots 
represented by each aspect class. 

Tabelle A - 5: Die Exposition nach der Österreichischen Waldinventur, ihre Variablennamen und die Anzahl der 
Probepunkte pro Expositionsklasse. 

Code Variable Name Aspect No. Subplots -
Time 1 

0 ASDO NO ASPECT 1478 

1 ASDJ NORTH 2734 

2 ASD2 NORTHEAST 2174 

3 ASD3 EAST 2079 

4 ASD4 SOUTHEAST 1554 

5 ASD5 SOUTH 2322 

6 ASD6 SOUTHWEST 1699 

7 ASD7 WEST 2060 

8 ASD8 NORTHWEST 1976 
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Table A - 6 :  The ANFI slope classes, their modeHing variable name, inventory code and the number of subplots 
represented by each slope class. 

Tabelle A - 6: Die Hangneigung nach der Österreichischen Waldinventur, ihre Variablennamen und die Anzahl der 
Probepunkte pro Hangneigungsklasse. 

Code Variable Name Slope position No. Subplots -
Time 1 

1 RLDI CONVEX UPPER SLOPE 977 

2 RLD2 MIDDLE SLOPE 14247 

3 RLD3 CONCA VE LOWER SLOPE 978 

4 RLD4 DITCH 101 

5 RLD5 V ALLEY BOTTOM 51 

6 RLD6 PLAIN 1687 

7 RLD7 HOLLOW 33 

Table A - 7: The ANFI Vegetation types, their modeHing variable name, inventory code and the number of subplots 
represented by each vegetation type, taken from Monsemd and Sterba ( 1 996). 

Tabelle A - 7:  Die Vegetationstypen der Österreichischen Waldinventur, ihre Variablennamen und die Anzahl der 
Probepunkte pro Vegetationstyp, nach Monsemd und Sterba ( 1 996). 

Code Variable name Name No. Subplots -
Time 1 

1 GVD1 SHADE-TOLERANT HERBS TYPES 2103 

2 GVD2 MODERATELY MOIST HERB TYPES 1481 

3 G VD3 THERMOPHILIC HERB TYPES 228 

4 GVD4 0XALIS ACETOSELLA TYPES 4555 

5 GVD5 LUXURIANT MOSS-VACCINIUM-AVENELLA TYPE 660 

6 G VD6 SPARSE MOSS- VACCINIUM-AVENELLA TYPE 3929 

7 G VD7 MOSS TYPE 98 

8 G VDB AVENELLA TYPE 158 

9 G VD9 DRY 8LUEBERRY-CRANBERRY TYPE 42 

10 GVD10 CALLUNA TYPE 45 

1 1  G VD 1 1  SPHAGNUM- VACCINIUM-AVENELLA TYPE 98 

12 GVD12 COMPETING GRASS COVER 2 1 19 

13 G VD13 0EPLETION OR LITTER EROSION SITES 52 

14 G VD14 SUBALPINE DWARF SHRUBS 94 
15 G VD15 ER/CA TYPE 162 

16 G VD16 PASTURE FOREST TYPES 396 

17 G VD 1 7  PIONEER VEGETATION 3 

18 GVD18 SEEP VEGETATION TYPES 183 

19 GVD19 HYDROPHYTIC PERENNIAL SHRUB TYPE 1582 

20 G VD20 FLOODPLAIN OR ALLUVIAL FOREST TYPES 85 
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Table A - 8 :  The ANF I  stand structure classes, their modeHing variable name, inventory code and the number of 
subplots represented by each stand structure class. 

Tabelle A - 8: Die Bestandesstruktur nach der Österreichischen Waldinventur, die Variablennamen und die Anzahl 
der Probepunkte pro Bestandesstrukturklasse. 

Code Variable Name Variable Name Structure Class No. Subplots 
Time 1 Time 2 - Time 1 

1 SSDJ_Tl SSDI_T2 I LAYER 13822 

2 SSD2_TJ SSD2_T2 2 LAYER 3767 

3 SSD3 Tl SSD3 T2 MULTILAYER 487 
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Table A- 9: ANFI Soil groups transcribed into the FAO-UNESCO (1 989) soil groups, their modeHing variable 
names, inventory code, and the number of subplots represented by each soil group, taken from Sterba and Monsemd 
( 1 996). 

Tabelle A - 9: Die Bodentypen der Österreichischen Waldinventur in ihrer Bezeichnung nach FAO-UNESCO 
( 1 989), ihre Variablenname und die Anzahl der Probepunkte pro Bodentyp, nach Monsemd und Sterba ( 1 996). 

Code Variable Name Soil group No. Subplots 
- Time 1 

1 SCD1 LEPTOSOLS DERIVED FROM NONCALCAREOUS MATERIAL (LITHIC LEPTOSOLS, 132 
UMBRIC LEPTOSOLS AND ARENOSOLS) 

2 SC02 DYSTRIC CAMBISOLS, FERRALIC CAMBISOLS AND COLLUVIAL SOlLS DERIVED FROM 1740 
DYSTRIC SILICATE MATERIAL 

3 SCD3 EUTRIC CAMBISOLS, COLLUVIAL SOlLS DERIVED FROM EUTRIC SILICATE MATERIAL 1634 
AND CALCAREOUS CAMBISOLS 

4 SCD4 SPODI-DYSTRIC CAMBISOL ON SILICATE MATERIAL 4517 

5 SC05 CLIMATE-INDUCED PODZOLS DERIVED FROM DYSTRIC SILICATE MATERIAL 631 

6 SCD6 SUBSTRATE-INDUCED PODZOLS (DERIVED FORM QUARTZITE, QUARTZ-PHYLLITE, 349 
QUARTZ-SAND, QUARTZ SANDSTONE, ARKOSE) 

7 SC07 SUBSTRATE-INDUCED GLEYIC PODZOL 66 

8 SCDB LiGHT-TEXTURED CAMBISOLS AND SPODIC CAMBISOLS DERIVED FROM 516 
UNCONSOLIDATED SEDIMENTS 

9 SCD9 HEAVY-TEXTURED CAMBISOLS AND LUVISOLS DERIVED FROM MORAINE MATERIAL, 443 
NON-CALCAREOUS LOESS, OR MUDSTONE 

10 SCD10 CAMSISOLS AND LUVISOLS DERIVED FROM CALCAREOUS LOESS 203 

11  SCD 1 1  (EUTRIC) PLANOSOLS AND STAGNIC GLEYSOLS DERIVED FROM FLYSCH OR 633 
MUDSTONE 

12 SCD1 2  (EUTRIC) PLANOSOLS AND STAGNIC GLEYSOLS DERIVED FROM LOESS 81 

13 SCD 13 TEMPORARILY WATERLOGGED (STAGNO-GLEYIC) SOlLS ON UNCONSOLIDATED 775 
SEDIMENTS 

14 SCD 14 STAGNIC CAMBISOLS OR GLEYSOLS WITH MARKED INTERFLOW 291 

15 SCD1 5  RELIC SOlL MATERIAL SHOWING FERRALIC PROPERTIES (FERRALIC CAMBISOLS) 309 

16 SCD 16 CHERNOZEMS 10 

17 SCD 1 7  LEPTOSOLS DERIVED FROM CALCAREOUS MATERIAL (RENDZIC LEPTOSOLS AND 1918 
LITHIC LEPTOSOLS) 

18 SCD 1 8  COLLUVIAL SOlLS SHOWING PROPERTIES OF BOTH RENDZIC LEPTOSOLS AND 1628 
CHROMIC CAMBISOLS (TERRA FUSCA) 

19 SCD1 9  CHROMIC CAMBISOLS O N  CALCAREOUS BEDROCK (TERRA FUSCA) 1517 

20 SCD20 GLEYSOLS 145 

21  SCD21 FLUVISOLS ALONG SMALL RIVERS 149 

22 SC022 FLUVISOLS 134 

23 SCD23 MOLLIGAND UMBRIC GLEYSOLS 171 

24 SCD24 H ISTIC GLEYSOLS AND TERRIC HISTOSOLS 7 

25 SC025 FIBRIC H ISTOSOLS 24 

26 SCD26 ÄNTHROSOLS 53 
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Table A - 10: The ANFI growth districts, their modeHing variable names, inventory code and the nurnber of subplots 
represented by each growth district, taken from Monsemd and Sterba ( 1996). 

Tabelle A - 10: Die Wuchsbezirke nach der Österreichischen Waldinventur, ihre Variablennamen und die Anzahl 
der Probepunkte pro Wuchsbezirk nach Monsemd und Sterba (1 996). 

Code Variable Name Growth District No. Subplots 
- Time 1 

1 GZD1 AUSTRIAN PART OF THE 80HEMIAN MASSIF 1966 

2 GZD2 EASTERN PANNONIC SEMIARID REGION 259 

3 GZD3 HILLS AND PLAINS BETWEEN THE ALPS AND THE DANUBE, 223 
EASTERN PART 

4 or 5 GZD4,5 HILLS AND PLAINS BETWEEN THE DANUBE, WESTERN PART 527 
AND KOBERNAUSSERWALD 

6 GZD6 EASTERN EDGE OF THE ALPS 532 

7 GZD7 EASTERN FLYSCH ALPS 41 

8 GZDB WESTERN FLYSCHALPS WITH HUMID CLIMATE 543 

9 GZD9 NORTHERN CALCAREOUS ALPS, EASTERN PART 1682 

10 GZD1 0  NORTHERN CALCAREOUS ALPS, WESTERN PART 1839 

1 1  GZD 1 1  NORTHERN CENTRAL ALPS, EASTERN PART 1373 

12 GZD 1 2  NORTHERN CENTRAL ALPS, WESTERN PART 617 

13 GZD13 CENTRAL ALPS 2085 

14 GZD14 INNER CENTRAL ALPS WITH CONTINENTAL CLIMATE 285 

15 GZD 1 5  SOUTHERN CENTRAL ALPS 1820 

16 GZD 1 6  KLAGENFURT VALLEY 288 

17 GZD 1 7  AUSTRIAN SOUTHERN ALPS 750 

18 GZD 18 SOUTH-EASTERN EDGE OF THE AUSTRIAN ALPS 1225 

19 GZD 1 9  GRANITE HILLS O N  T H E  EASTERN EDGE O F  THE ALPS 351 

20 GZD20 SOUTH·EASTERN HILLS AND TERRACES 1065 

21  GZD21 MOUNTAINS OF THE MIDDLE .BURGENLAND" 254 



Figure A - 1 1 : Growth Zones of Austria. 

Abbildung A - 1 1 : Wuchsbezirke Österreichs. 
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11 APPENDIX B 

Table B - 1 :  Logistic regression for Regen I - 1 (with trees). Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 1 :  Logistische Regression für Verjüngung I ,,REGEN I" - 1 (Probeflächen mit Bäumen in der 
Winkelzählprobe). Die Tabelle enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den 
Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. Unter der Tabelle werden die 
Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC-Kurve, die a priori 
Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > Chi-Square 
Description 

INTERCEPT Intercept -0. 1 162 0.3979 0.7703 

LN(A_NOSH_Tl) Nü BROWSE 0.6158 0 .1917 0.0013 

A_GRSH_Tl GRASS BROWSE 0.2038 0.0624 0.00 1 1  

GZDJO Growth Zone 1 0  0.8584 0.3683 0.01 98 

GZD7 Growth Zone 7 2.0060 1 . 1 560 0.0827 

GZD19,20 Growth Zone 19, 20 -1 .7917 0.8034 0.0257 

GVD2 Moist Herb Type 1 .5429 0.4953 0.0018 

SSDJ_T2 1 Layer Stand - 1 . 1 5 12 0.2693 <.0001 

C_QMD Change in Quadratic 
0.0349 0.0204 0.0870 

Mean Diameter 

ASD7 West Aspect 0.5593 0.3 149 0.0757 

STANGSH_T2 POLE Stand -0.3660 0. 1 1 08 0.00 1 0  

Hosmer-Lemeshow statistic = 1 1.4682 with 8 DF (p=0. 1766) 
ROC = .76 
A Priori Probabil ity = .48, Threshold Probability = .49 
n = 382 
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Table B - 2: Logistic regression for Regen I - 1 (no trees). Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 2: Logistische Regression für Verjüngung I "REGEN I" - 1 (Probeflächen ohne Bäume in der 
Winkelzählprobe ) . Die Tabelle enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den 
Standardfehler und die W abrscheinlichkeit für das Zutreffen der Null-Hypothese. Unter der Tabelle werden die 
Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC-Kurve, die a priori 
Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > Chi-Square 
Description 

INTERCEPT Intercept 0.2 1 85 0.9 1 1 8  0.8106 

ELEV Elevation 0.2 1 45 0.0243 <.0001 

INTVAL Interval Length -0.5913 0 . 1685 0.0004 

STDJ T2 Norway Spruce - 1 .6 1 64 0.3959 <.0001 

GZD9, 10,12 Growth Zone 9, 1 0  
0.8463 0. 1 775 <.0001 

or 1 2  

Concave Lower 
RLD3,4, 7 Slope, -2.0624 0.7508 0.0060 

Ditch or Hollew 

LN(A_NOSH_Tl) No Browse 0.5530 0.1 523 0.0003 

Hosmer-Lemeshow statistic = 10.0366 with 8 DF (p=0.2625) 
ROC = .77 
A Priori Probability = .37, Threshold Probability = .46 
r! = 801 



144 

Table B - 3: Logistic regression for Regen II - 1 ( with trees ). Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-va!ue. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the model. 

Tabelle B - 3: Logistische Regression fiir V eijüngung II ,,REGEN II" - 1 (Probeflächen mit Bäumen in der 
Winkelzählprobe ) . Die Tabelle enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den 
Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. Unter der Tabelle werden die 
Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC-Kurve, die a priori 
Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 1 .0628 0.5 5 1 3  0.0539 

LN(JUNGIISH_Tl) Regen il 1 .9059 0.2276 <.0001 

SSDJ_T2 X Regen II x 1 layer 
-1 .7623 0.2350 <.0001 

LN(JUNGIISH_Tl) stand 

SSDI_T2 1 layer stand 1 .0625 0.2988 0.0004 

STDI T2 Norway Spruce -0.9349 0.09 1 1  <.0001 

C_QMD Change in Quadratic 
-0.0943 0.01 08 <.0001 

Mean Diameter 

ELEV Elevation 0.0586 0.0 1 17 <.0001 

A_NDSH_Tl Conifer Browse 0.2580 0.0366 <.0001 

INTVAL Interval V alue -0. 1 762 0.0834 0.0346 

Hosmer-Lemeshow statistic = 8.2781 with 8 DF (p=0.4068) 
ROC = .76 
A Priori Probability = .89, Threshold Probability = .77 
n = 6713 
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Table B - 4: Logistic regression for Regen II - 1 (no trees). Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 4: Logistische Regression fiir Verjüngung II ,,REGEN II" - 1 (Probeflächen ohne Bäume in der 
Winkelzählprobe ). Die Tabelle enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den 
Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. Unter der Tabelle werden die 
Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC-Kurve, die a priori 
Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate 
Description 

INTERCEPT Intercept 1 .3796 

ELEV Elevation 0. 1 1 65 

SSDJ_T2 1 Layer Stand - 1 .4156 

A_LASH_Tl Deciduous Browse 0.3628 

A_NDSH_Tl Conifer Browse 0.2294 

JUNGIISH_ Tl Regen II 0.0878 

Hosmer-Lemeshow statistic =7.8098 with 8 DF (p=0.4523) 
ROC = .72 
A Priori Probability = .95, Threshold Probability = .87 
n = 1781 

Standard Error Pr > ChiSq 

0.5691 0.01 53 

0.0321 0.0003 

0.4814 0.0033 

0. 1 1 9 1  0.0023 

0.0737 0.0018 

0.0362 0.0152 
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Table B - 5:  Logistic regression for Regen II - 0 (with trees). Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the model. 

Tabelle B - 5: Logistische Regression für Verjüngung II ,,REGEN II" - 0 (Probeflächen mit Bäumen in der 
Winkelzählprobe ). Die Tabelle enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den 
Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. Unter der Tabelle werden die 
Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC-Kurve, die a priori 
Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -0.3695 0.1 564 0.0 1 8 1  

ELEV Elevation -0. 1 0 1 6  0.0123 <.0001 

A_NOSH_Tl No Browse -0. 1659 0.01 54 <.0001 

STDO_T2 No trees in angle 
1 .2079 0.2046 <.0001 

count 

GZD7,9, 10  Growth Zone 7, 9 or 
-0.46 1 8  0. 1254 0.0002 

1 0  

SCD3,4 Soil Group 3 or 4 0.3663 0. 1 1 02 0.0009 

RLD3 Concave Lower 
0.4787 0 .1842 0.0093 

Slope 

SSDJ T2 1 Layer Stand -1 .2953 0. 1059 <.0001 

JUNGISH Tl Regen I 0.2903 0.01 75 <.0001 

Hosmer-Lemeshow statistic =3.0400 with 8 DF (p=0.9318) 
ROC = .79 
A Priori Probability = .08, Threshold Probability = . 18  
n = 8121 
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Table B - 6: Logistic regression for Regen II - 0 (no trees). Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 6: Logistische Regression für Verjüngung II ,,REGEN II" - 0 (Probe flächen ohne Bäume in der 
Winkelzählprobe). Die Tabelle enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den 
Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. Unter der Tabelle werden die 
Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC-Kurve, die a priori 
Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -3.3376 0.8776 0.0001 

ELEV Elevation -0. 1 724 0.0220 <.0001 

JUNGISH_Tl Regen I 0.3373 0.0263 <.0001 

A NOSH Tl No Browse -0. 1 896 0.0416 <.0001 

INTVAL Interval V alue 0.4732 0. 1 5 1 6  0.0018 

RLD3, 7 Concave Lower 1 .0282 0.3788 0.0066 
Slope or Hollow 

GZD6 Growth Zone 6 - 1 .273 1 0.4883 0.0091 

GZD9,10,12 Growth Zone 9, 10 
-0.8204 0.1 686 <.0001 

or 1 2  

Hosmer-Lemeshow statistic = 12.5077 with 8 DF  (p=0.1299) 
ROC = .85 
A Priori Probability = .48, Threshold Probability = .56 
n = 1130 
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Table B - 7: Logistic regression for No Browse - 1. Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the model. 

Tabelle B - 7: Logistische Regression für Keine Äsung - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 7.9284 0.3639 <.0001 

C_BA Change in Basal 
0.0176 0.00272 <.0001 

Area 

INTVAL Interval Value -1 .5 1 14 0.0634 <.0001 

STDO_T2 No Trees in Angle 
- 1 . 1 637 0.0938 <.0001 Count 

JUNGIISH_Tl Regen il 0.1 075 0.0 1 03 <.0001 

G VD6 Sparse Moss Type 0.345 1 0.0699 <.0001 

STANGSH_T2 Pole Stand 0.0694 0.0 1 1 5  <.0001 

SSDJ_T2 1 Layer Stand -0.1 897 0.0697 0.0065 

CCF_T2 Crown Competition 
0.000589 0.000137 <.0001 

Factor 

STD4l_T2 Mixed Deciduous -0.4850 0.0973 <.0001 

A NOSH Tl No Browse 0.3800 0.0128 <.0001 

Hosmer-Lemeshow statistic =5.6990 with 8 DF (p=0.6809) 
ROC = .83 
A Priori Probability = .86, Threshold Probability = .68 
n = 12779 
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Table B - 8: Logistic regression for No Browse 0. Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 8: Logistische Regression für Keine Äsung - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten KoeffiZienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -3.7595 0.3917 <.0001 

ELEV Elevation -0.0487 0.00835 <.0001 

INTVAL Interval Value 0.3489 0.0647 <.0001 

STDO T2 No Trees in Angle 
-0.2576 0.0945 0.0064 

Count 

STDJ T2 Norway Spruce 0.3 1 26 0.0769 <.0001 

GZD9 Growth Zone 9 -0.3341 0 .1 157 0.0039 

Shade Herb, Moist 

GVD1,2,4,6 Herb, Moderhumus 
0.5799 0.0703 <.0001 

or Sparse Moss 
Types 

C_BA Change in Basal 
0.0 1 8 1  0.00404 <.0001 

Area 

SCD3 Soil Group 3 0.3240 0 . 1 023 0.001 5  

JUNGIJSH_Tl Regen II 0. 1 161  0.00983 <.0001 

5 OVERSH_ T22 Sum of Overstory 
0.00924 0.000935 <.0001 

Classes 

GZDJ5, 18 Growth Zone 15, 18  0.4167 0.0880 <.0001 

A_GRSH_Tl Grass Browse -0.0435 0.01 53 0.0044 

6ASUNGSH_Tl2 Sum ofBrowse 
0.01 68 0.001 86 <.0001 

Classes 

Hosmer-Lemeshow statistic = 12.9188 with 8 DF (p=0.1 147) 
ROC = .73 
A Priori Probability = .32, Threshold Probability = .39 
n = 5280 

5 OVERSH T2 = STANGSH T2 + BHISH T2 + BHIISH T2 

6 ASUNGS�_T1 = A_NDSH�T1 + A_LA;H_T1 + A_S;SH_T1 
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Table B - 9: Logistic regression for Deciduous Browse - 1 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-va1ue. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 
Tabelle B - 9: Logistische Regression fiir Laubbäume - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter Parameter 
Parameter Estimate Standard Error Pr > ChiSq Description 

INTERCEPT Intercept 2.6354 0.5085 <.0001 

ELEV Elevation -0.0462 0.0144 0.00 1 3  

INTVAL Interval V alue -0.4624 0.0833 <.0001 

GZD9,1 0  Growth Zone 9 or 
0.55 13 0. 1 085 <.0001 

1 0  

SCDJJ Soil Group 1 1  0.7 1 88 0. 1 909 0.0002 

RLDJ Convex Upper 
0.5 177 0 . 1 840 0.0049 Slope 

G VD4 Moderhumus in 
-0. 1 340 0. 1 1 63 0.2491 Conifer Stands 

C_BA Change in Basal 
-0.0175 0.0041 9  <.0001 Area 

LN(A_LASH_Tl) Deciduous Browse 1 .2491 0 . 1 340 <.0001 

A_NOSH_Tl No Browse -0. 1 120 0.01 72 <.0001 

STDJ T2 Norway Spruce -0. 1885 0.1 068 0.0776 

Hosmer-Lemeshow statistic = 6.4478 with 8 DF (p= 0 .5972) 
ROC = .70 
A Priori Probability = .68, Threshold Probability = .61 
n = 3036 
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Table B - 1 0 :  Logistic regression for Deciduous Browse - 0 .  Presented in th e  table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 10: Logistische Regression für Laubbäume - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -5.7788 0.3499 <.0001 

ELEV 0 . 1 3 13 0.0386 0.0007 

ELEV2 Elevation 
-0.01 92 0.00238 <.0001 

INTVAL Interval V alue 0.8028 0.0570 <.0001 

STDJ_T2 Norway Spruce -0.5 156 0.0697 <.0001 

STDJ0,41 Beech or Mixed 
0.4346 0.0742 <.0001 

Deciduous 

Shade Herb, 

GVDJ,3,19 Thermophilie Herb 
0.7077 0.0720 <.0001 

or Hydrophytic 
Shrub 

Moist Herb or 
GVD2,4 Moderhumus in 0.3756 0.0727 <.0001 

Conifer Stands 

C BA Change in Basal 
-0.0126 0.00245 <.0001 

Area 

GZD8,10 Growth Zone 8 or 
0.3230 0.0777 <.0001 

1 0  

GZDJ Growth Zone 1 -0.3341 0.0930 0.0003 

GZD4 Growth Zone 4 -0.6277 0. 1 60 1  <.0001 

LN(A_NOSH_Tl) No Browse -0.4389 0.0336 <.0001 

Hosmer-Lemeshow statistic = 3.3892 with 8 DF (p= 0.9076) 
ROC = .78 
A Priori Probability = . 11, Threshold Probability = .25 
n = 15023 
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Table B - 1 1 :  Logistic regression for Shrub Browse - 1. Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the model. 

Tabelle B - 1 1 :  Logistische Regression für Sträucher - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate 
Description 

INTERCEPT Intercept 2.8397 

ELEV Elevation -0.0833 

SLPE Slope 0.0653 

INTVAL Interval V alue -0.5097 

SCD4 Soil Group 4 -0.4953 

JUNGIISH_Tl Regen II -0.0587 

GVD4, 19 Moderhumus in 
-0.3366 

Conifer Stands 

GZD20 Growth Zone 20 -0.6952 

A_NOSH_Tl No Browse -0.0650 

A_STSH_Tl Shrub Browse 0.4883 

Hosmer-Lemeshow statistic =5.9022 with 8 DF (p=0.6582) 
ROC = .71 
A Priori Probability =.62, Threshold Probability = .57 
n = 1889 

Standard Error Pr > ChiSq 

0.6235 <.0001 

0.0204 <.0001 

0.0209 0.00 1 8  

0 . 1 0 1 8  <.0001 

0. 1582 0.0017 

0.0133 <.0001 

0. 1 04 1  0.0012 

0. 1 993 0.0005 

0.0221 0.0032 

0.0529 <.0001 
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Table B - 12 :  Logistic regression for Shrub Browse 0. Presented in the table are the model parameters, their 
description, estirnated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the nurober of observations used to fit the model. 

Tabelle B - 12:  Logistische Regression fiir Sträucher - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten KoeffiZienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter Parameter 
Parameter Estimate Standard Error Pr > ChiSq 

Description 

INTERCEPT Intercept -4.2330 0.4412 <.0001 

ELEV Elevation -0.2228 0.0 1 69 <.0001 

A NOSH Tl No Browse -0. 1299 0.0 1 1 7  <.0001 

INTVAL Interval Value 0.6450 0.0754 <.0001 

GZD13 Growth Zone 13 3 .0132 0.5091 <.0001 

ELEVX GZ13 Elevation x Growth 
-0. 1 97 1  0.0478 <.0001 

Zone 13  

ASD4,6 Southeast or 
0.4484 0.0894 <.0001 

Southwest Aspect 

SSDI_T2 1 Layer Stand -0.2691 0.0825 0.00 1 1  

GVDJ, l9 Shade Herb or 
0.6547 0.08 1 1  <.0001 

Hydrophytic Shrub 

GVD6, 7 Sparse Moss or 
-0.7501 0 . 1 2 1 0  <.0001 

Moss Type 

GVD14 Subalpine Dwarf 
2 . 8 1 00 0.4799 <.0001 

Shrub Type 

C_BA Change in Basal 
-0.0105 0.00325 0.0013 

Area 

7GRP_GZ Group of Growth 
1 .5984 0.2500 <.0001 

Zones 

ELEV X GRP_GZ Elevation x Group 
-0. 1405 0.03 1 0  <.0001 

of Growth Zones 

STDJO T2 Beech - 1 .0597 0.2607 <.0001 

Hosmer-Lemeshow statistic = 14.2304 with 8 DF (p=0.0760) 
ROC = .80 
A Priori Probability = .05, Threshold Probability = .18 
n = 16170 

7 GRP_GZ = GZD 1 i  OR GZD1 2  OR GZD 1 5  OR GZD1 7  OR GZD18 
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Table B - 1 3 :  Logistic regression for Raspberry Browse - 1 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the model. 

Tabelle B - 1 3 :  Logistische Regression fiir Hirnbeere - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate 
Description 

INTERCEPT Intercept 3.2534 

ELEV Elevation -0.0652 

JUNGIISH Tl Regen II -0.0888 

STDJ_T2 Norway Spruce -0.2932 

INTVAL Interval Value -0.6067 

SCDJ7,22 Soil Group 17 or 22 -0.7428 

Moderhumus in 

GVD4, 19 Conifer stands or 
0.7765 

Hydrophytic Shrub 
Types 

A_NOSH_Tl No Browse -0.0871 

A_HISH_TI Raspberry Browse 0.4041 

Hosmer-Lemeshow statistic =13.0283 with 8 DF (p=0.1109) 
ROC = .75 
A Priori Probabil ity = .63, Threshold Probability = .56 
n = 1803 

Standard Error Pr > ChiSq 

0.65 14 <.0001 

0.01 67 <.0001 

0.0 1 3 1  <.0001 

0. 1 19 1  0.0138 

0 . 109 1  <.0001 

0.2410 0.0021 

0 .1 1 74 <.0001 

0.0270 0.0013 

0.0470 <.0001 
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Table B - 1 4 :  Logistic regression for Raspberry Browse - 0 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 14: Logistische Regression für Himbeere - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -5.0943 0.421 7  <.0001 

ELEV Elevation -0. 1 0 1 7  0.00933 <.0001 

STDO_T2 No Trees in Angle 
0.6807 0.0904 <.0001 

Count 

C_BA Change in Basal -0.0196 0.00273 <.0001 

C BA2 Area 0.000234 0.000043 <.0001 

INTVAL Interval Value 0.5670 0.0731 <.0001 

SCD1 7,18,20,21 Soil Group 17, 18,  
- 1 . 1025 0 . 1 167 <.0001 

2 0  and 21 

SCD19 Soil Group 19 -0.5126 0.1413 0.0003 

GVDJ9 Hydrophytic Shrub 
1 .7240 0. 1 1 1 1  <.0001 

Type 

Shade Herb or 

GVDJ,4 Moderhumus in 
0.6086 0.0818  <.0001 

Conifer Stands 
Types 

LN(A_NOSH_Tl) No Browse -0.3145 0.0443 <.0001 

GZD1 7 Growth Zone 17 -0.8046 0.2893 0.0054 

Hosmer-Lemeshow statistic = 3.9777 with 8 DF (p=0.8591) 
ROC = .76 
A Priori Probability = .06, Threshold Probabil ity = .15 
n = 16254 
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Table B - 1 5 :  Logistic regression for Blueberry Browse - 1 .  Presented in the table are the rnodel pararneters, their 
description, estirnated coefficient, standard error and p-value. Below the table is the Hosrner & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the nurnber of Observations used to fit the rnodel. 

Tabelle B - 1 5 :  Logistische Regression für Heidelbeere - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrturnswahrscheinlichkeit des Hosrner & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estirnate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 3.0306 0.4794 <.0001 

ELEV Elevation 0.0806 0.0 1 19 <.0001 

INTVAL Interval Value -0.7028 0.0808 <.0001 

SLPE Slope -0.0691 0 .0190 0.0003 

STDO_T2 No Trees in Angle 
-0.4369 0. 1208 0.0003 

Count 

GZDJ7 Growth Zone 1 7  -0.5203 0 . 1 920 0.0067 

SCD2 Soil Group 2 -0.321 1  0 . 1304 0.01 38 

GVD6 Sparse Moss 0.2984 0. 1 028 0.0037 

GVD4 Moderhumus in 
-0.3936 0 . 1206 0.001 1  

Conifer Stands 

GVDJ9 Hydrophytic Shrub 
-0.7849 0.2 1 27 0.0002 

Type 

A HESH Tl Blueberry Browse 0.5826 0.0338 <.0001 

C BA Change in Basal 
0.01 22 0.00360 0.0007 

Area 

Hosmer-Lemeshow statistic = 13.0757 with 8 DF (p=0.1093) 
ROC = .80 
A Priori Probability = .84, Threshold Probability = .68 
n = 5580 
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Table B - 1 6: Logistic regression for Blueberry Browse - 0 .  Presented in the table are th e  model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the nurober of observations used to fit the model. 

Tabelle B - 16 :  Logistische Regression fiir Heidelbeere - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -5.8901 0.4475 <.0001 

SCD2,4 Soil Group 2 or 4 0.5632 0.083 1 <.0001 

SCD5, 6 Soil Group 5 or 6 1 . 1 390 0.1741  <.0001 

ASD2,8 Northeast or 
0.4302 0.0846 <.0001 

Northwest Aspect 

ELEV Elevation 0 . 1 5 1 3  0.0 1 1 6  <.0001 

STD41 T2 Mixed Deciduous -0.7867 0.2094 0.0002 

INTVAL Interval Value 0.4109 0.0769 <.0001 

SLPE Slope -0.1 354 0.0180 <.0001 

JUNGISH_Tl2 Regen II -0.00523 0.00163 0.0013 

CCF T2 Crown Competition 
-0.00086 0.000220 <.0001 

Factor 

G VD6 Sparse Moss Type 1 .5334 0.1 1 00 <.0001 

Hosmer-Lemeshow statistic = 15.8413 with 8 DF (p=0.0447) 
ROC = .77 
A Priori Probability =.07, Threshold Probability = .17 
n = 12426 
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Table B - 1 7 :  Logistic regression for Erica Browse - I .  Presented i n  the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Be!ow the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the nurober of observations used to fit the model. 

Tabelle B - 17: Logistische Regression fiir Erika - I. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate 
Description 

INTERCEPT Intercept 9.6 1 1 6  

WTRG Water Regime -0.8594 

GZDJ Growth Zone 1 -2.063 1 

GVDJ5 Erica Type 1 .3 122 

INTVAL Interval Value - 1 .3413 

Hosmer-Lemeshow statistic = 6.0071 with 6 DF (p=0.4224) 
ROC = .78 
A Priori Probability = .64, Threshold Probability = .58 
n = 444 

Standard Error Pr > ChiSq 

1 .4338 <.0001 

0.2098 <.0001 

0.71 05 0.0037 

0.2870 <.0001 

0.2337 <.0001 
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Table B - 18 :  Logistic regression for Erica Browse - 0. Presented in the table are the rnodel pararneters, their 
description, estirnated coefficient, standard error and p-value. Below the table is the Hosrner & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the nurnber of Observations used to fit the rnodel. 

Tabelle B - 18 :  Logistische Regression für Erika - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrturnswahrscheinlichkeit des Hosrner & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estirnate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -6.3232 0.9896 <.0001 

WTRG W ater Regime -0.5905 0. 145 1  <.0001 

INTVAL Interval Value 0.6228 0. 1 580 <.0001 

SCDJ7, 18 Soil Group 17 or 18 1 .0381 0 . 18 12 <.0001 

GVD15 Erica Type 5.4871 0.8003 <.0001 

GVD9 Avenella Type 2.95 15  0.5728 <.0001 

Luxuriant Moss, 

GVD5, 6, 16 Sparse Moss or 1 .2033 0. 1 684 <.0001 
Pasture Forest 

Types 

A_NOSH_Tl No Browse -0.2397 0.0322 <.0001 

Hosmer-Lemeshow statistic = 8. 1603 with 8 DF (p=0.4180) 
ROC = .79 
A Priori Probability = .01, Threshold Probability = .06 
n = 17615 
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Table B - 19: Logistic regression for Herb Browse - 1 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 19:  Logistische Regression fur Kräuter - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fur das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 6. 1 0 1 1 0.3698 <.0001 

LN(A_KRSH_Tl) Herb Browse 1 .5407 0.0848 <.0001 

STDI_T2 Norway Spruce -0.2286 0.0632 0.0003 

INTVAL Interval Value - 1 .0617 0.0622 <.0001 

GZD1,4 Growth Zone 1 or 4 -0.6325 0.0898 <.0001 

GZD9,10,12, 1 7  Growth Zone 9, 1 0, 
0.7768 0.0743 <.0001 

12 or 17 

SCD4 Soil Group 4 -0.2956 0.0722 <.0001 

G VD5,8 Luxuriant Moss or 
-1 .5 180 0. 1 880 <.0001 Avene/la Types 

GVD6, 15 Sparse Moss or 
-0.9563 0.0802 <.0001 

Erica Types 

JUNGISH_TJ, 
Regen I or Regen II -0.0472 0.00860 <.0001 JUNGIISH_Tl 

QMD_T2 Quadratic Mean 
0.0125 0.00239 <.0001 

Diameter 

Hosmer-Lemeshow statistic =6.6203 with 8 DF (p=0.5781) 
ROC = .79 
A Priori Probability = .85, Threshold Probability = .70 
n = 10976 
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Table B - 20: Logistic regression for Herb Browse - 0 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 20: Logistische Regression für Kräuter - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 

INTERCEPT 

INTVAL 

GZDJ 

SCD14, 1 7, 18, 19 

G VDJ,2, 19 

GVD5 

GVD6 

A_NOSH_Tl 

C_BA2 

QMD_T2 

RLD3 

Parameter 
Description 

Intercept 

Interval V alue 

Growth Zone 1 

Soil Group 14, 17, 
18 or 1 9  

Shade Herb, Moist 
Herb or 

Hydrophytic Shrub 
Types 

Luxuriant Moss 

Sparse Moss 

No Browse 

Change in Basal 
Area 

Quadratic Mean 
Diameter 

Concave Lower 
Slope 

Parameter Estimate 

-2.9432 

0.4020 

-0.4553 

0.791 8  

0.3840 

- 1 .5092 

-0.785 1 

-0.0713  

0.000182 

0.01 03 

0.5 1 5 1  

Hosmer-Lemeshow statistic =13.7294 with 8 DF (p=0.0891) 
ROC = .70 
A Priori Probability = .24, Threshold Probability = .31 
n = 7083 

Standard Error 

0.3302 

0.0593 

0.0879 

0.0872 

0.091 6  

0. 1 505 

0.0679 

0.00785 

0.000063 

0.00207 

0 . 1646 

Pr > ChiSq 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

<.0001 

0.0037 

<.0001 

0.0017 
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Table B - 2 1 :  Logistic regression for Fern Browse - 1 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 2 1 :  Logistische Regression fiir Farne - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 2.72 1 0  0.5824 <.0001 

SQRT(ELEV) Elevation 0.5695 0.0730 <.0001 

INTVAL Interval Value - 1 . 1 075 0.0839 <.0001 

WTRG Water Regime 0. 1 99 1  0.0936 0.0335 

GZD1,4,8,12 Growth Zone 1, 4, 8 0.5690 0 . 104 1  <.0001 
or 1 2  

GZD1 7 Growth Zone 17 -0.4672 0.1797 0.0093 

ASD4,5, 6 Southeast, South or -0.4302 0. 1 048 <.0001 
Southwest Aspect 

GVD4 Moderhumus in 0.5658 0.0865 <.0001 
Conifer Stands 

GVD12 Competing Grass -0.5490 0. 1770 0.0019 
Cover 

LN(A_FASH_Tl) Fern Browse 1 .3563 0 . 1505 <.0001 

Hosmer-Lemeshow statistic = 7.6517 with 8 DF (p=0 .4682) 
ROC = .73 
A Priori Probability = .59, Threshold Probability = .56 
n = 2845 
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Table B - 22: Logistic regression for Fern Browse - 0. Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 22: Logistische Regression fiir Farne - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -4.4876 0.2 190 <.0001 

A_NOSH_Tl No Browse -0.063 1 0.0 1 07 <.0001 

WTRG W ater Regime 0.3048 0.0678 <.0001 

STDJ T2 Norway Spruce 0.3 136 0.0733 <.0001 

GZD8,1 1,12 Growth Zone 8, 1 1 ,  0.5882 0.0882 <.0001 
or 1 2  

GZD18 Growth Zone 1 8  -0.5897 0 . 1648 0.0003 

GZD20 Growth Zone 20 - 1 .2373 0.2847 <.0001 

SCD4 Soil Group 4 0.3448 0.0786 <.0001 

SCDJ4 Soil Group 14 0.9236 0.2069 <.0001 

ASDJ,2,8 North, Northeast or 0.6825 0.0705 <.0001 
Northwest Aspect 

QMD_T2 Quadratic Mean 0.0 1 14 0.00224 <.0001 
Diameter 

GVD4, 19 Moderhumus in 0.8 1 99 0.0734 <.0001 
Conifer Stands 

Hosmer-Lemeshow statistic = 9.4160 with 8 DF (p=0.3084) 
ROC = .72 
A Priori Probability = .061 Threshold Probability = . 15 
n = 15209 
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Table B - 23: Logistic regression for Grass Browse - 1 .  Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of Observations used to fit the model. 

Tabelle B - 23: Logistische Regression fiir Gräser - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept 4.7282 0.3316 <.0001 

ELEV Elevation 0. 1 1 19 0.0072 1 <.0001 

INTVAL Interval V alue -0.9861 0.0553 <.0001 

GZDJ Growth Zone 1 0.3028 0.0905 0.0008 

GZD2 Growth Zone 2 0.8745 0.2591 0.0007 

GZDJJ Growth Zone 1 1  -0.4556 0.095 1 <.0001 

SCDJ 7 Soil Group 17 0.5483 0. 1 039 <.0001 

Shade Herb, 
Moderhumus, 

G VDJ,4,5,6, 19 Luxuriant Moss, -0.6093 0.0694 <.0001 
Sparse Moss or 

Hydrophytic Shrub 
Types 

C BA Change in Basal -0.00999 0.00262 0.0001 
Area 

JUNGIISH_Tl Regen II -0.0676 0.0071 1  <.0001 

LN(A_GRSH_Tl) Grass Browse 1 .8632 0.0793 <.0001 

STANGSH T2 Pole Stand -0.061 1  0.00902 <.0001 

SCD3 Soil Group 3 -0.2259 0.0868 0.0093 

GVDJO Ca/luna Type - 1 .0539 0.461 5  0.0224 

Hosmer-Lemeshow statistic = 5. 1275 with 8 DF (p=0.7439) 
ROC = .80 
A Priori Probability = .81, Threshold Probability = .66 
n = 11022 
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Table B - 24: Logistic regression for Grass Browse - 0. Presented in the table are the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the Hosmer & Lerneshow test 
statistic and associated p-value, the area under the ROC curve, the a priori probability, the threshold probability, and 
the number of observations used to fit the model. 

Tabelle B - 24: Logistische Regression fiir Gräser - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Null-Hypothese. 
Unter der Tabelle werden die Irrtumswahrscheinlichkeit des Hosmer & Lerneshow Tests, die Fläche unter der ROC­
Kurve, die a priori Wahrscheinlichkeit, der Schwellenwert und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ChiSq 
Description 

INTERCEPT Intercept -3 . 1 600 0.3586 <.0001 

ELEV Elevation 0.0832 0.00885 <.0001 

INTVAL Interval Value 0.33 18  0.0621 <.0001 

STDJO T2 Beech -0.7384 0 . 1 807 <.0001 

STDO_T2 No Trees in Angle 0.3030 0.0999 0.0024 
Count 

GZDJ Growth Zone 1 0.3723 0.0927 <.0001 

GVD4 Moderhumus -0.3130 0.0743 <.0001 

Avene/la or 
GVD8, 1 2  Competing Grass 1 .5235 0.2425 <.0001 

Cover Types 

C_BA Change in Basal -0.02 1 1  0.00291 <.0001 
Area 

JUNGIISH Tl Regen II -0.0274 0.00995 0.0059 

A_NOSH_Tl No Browse -0.0575 0.00986 <.0001 

STANGSH_T2 Pole Stand -0.0575 0.0 1 07 <.0001 

GZD17 Growth Zone 17 -0.5325 0. 1 838 0.0038 

Hosmer-Lemeshow statistic = 10.2307 with 8 DF (p=0 .2492) 
ROC = .67 
A Priori Probability = .20, Threshold Probability = .27 
n = 7037 
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12 APPENDIX C 

Table C - 1 :  Logarithmic regression for REGEN I - 1 (with trees). The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
Observations used to fit the model. 

Tabelle C - 1 :  Logarithmische Regression für Verjüngung I ,,REGEN I" - 1 (mit Bäumen in WZP). Die Tabelle 
enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die 
Wahrscheinlichkeit für das Zutreffen der Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die 
Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept -0.04248 0.46690 0.9276 

LN(JUNGISH_Tl) Regen ! 0.45941 0.07540 <.0001 

INTVAL Interval Value -0.20891 0.08043 0.0099 

GZD7 Growth Zone 7 1 . 1 6372 0.29355 <.0001 

GZD9 Growth Zone 9 0.32129 0 . 14655 0.0292 

GZDJO Growth Zone 1 0  0.67253 0 . 12497 <.0001 

GZDJ9,20 Growth Zone 19 or -0.65695 0 . 1 6987 0.0001 20 

ASD7 West Aspect 0.49085 0. 1 1262 <.0001 

SSD2 T2 2 Layer Stand 0.70219 0.091 66 <.0001 

G VD2 Moist Herb Type 0.93208 0. 1 5445 <.0001 

GVDJ9 Hydrophytic Shrub -0.3 1 3 1 3  0. 14344 0.0299 
Type 

A_GRSH_Tl Grass Browse 0. 14977 0.02376 <.0001 

LN(A_NOSH_Tl) No Browse 0.33003 0.067 1 0  <.0001 

C_QMD Change in Quadratic 0.01 562 0.00594 0.0091 
Mean Diameter 

=.54 
n = 269 
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Table C - 2: Logarithmic regression for Regen II - 1 (with trees). The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 2: Logarithmische Regression für Verjüngung II ,,REGEN II" - 1 (mit Bäumen in WZP). Die Tabelle 
enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die 
Wahrscheinlichkeit für das Zutreffen der Nullhypothese. Unter der Tabelle wird das Bestimmtheilsmaß und die 
Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estirnate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 0.43426 0.08658 <.0001 

LN(JUNGIISH_Tl) Regen il 0.77143 0.01591 <.0001 

ELEV Elevation 0.02012 0.00192 <.0001 

INTVAL Interval Value -0.08074 0.01 485 <.0001 

STDI_T2 Norway Spruce -0.34042 0.01684 <.0001 

STDJO T2 Beech 0. 17109 0.04521 0.0002 

GZD6 Growth Zone 6 0 . 13581 0.0461 8  0.0033 

GZD11,20 Growth Zone 1 1  or 0.07120 0.02258 0.0016  20 

SSDJ_T2 1 Layer Stand -0.36713  0.01580 <.0001 

LN(A_NDSH_Tl) Conifer Browse 0.30386 0.0 129 1  <.0001 

C_BA Change in Basal -0.00531 0.00090934 <.0001 
Area 

K=.53 
n = 4296 
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Table C - 3:  Logarithmic regression for Regen II - 1 (no trees). The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 3: Logarithmische Regression für Verjüngung Il ,,REGEN II" - 1 (ohne Bäume in WZP). Die Tabelle 
enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die 
Wahrscheinlichkeit für das Zutreffen der Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die 
Anzahl der Beobachtungen angegeben. 

Parameter Parameter 
Parameter Estimate Standard Error Pr > ltl 

Description 

INTERCEPT Intercept -0. 19987 0.07572 0.0084 

LN(JUNGIISH_Tl) Regen il 0.89566 0.03840 <.0001 

LN(A_NDSH_Tl), Conifer or 0.39081 0.02330 <.0001 LN(A_LASH_Tl) Deciduous Browse 

STDO_T2 No Trees in Angle -0.05493 0.02354 0.0 1 98 
Count 

GZD3, 7,19 Growth Zone 3, 7 or -0. 19286 0.05258 0.0003 19  

SCDJ5,20,22 Soil Group 15,  20 or -0.3941 7  0.07444 <.0001 22 

SSDJ_T2 1 Layer Stand -0.47064 0.0501 1  <.0001 

G VD2 Moist Herb Type -0. 1 3527 0.04872 0.0056 

GVD4 Moderhumus in -0.29029 0.04569 <.0001 
Conifer stand 

GVD7 Moss Type -0.45280 0. 1 93 1 5  0 .0 1 92 

SSDJ_T2 X ELEV 1 Layer Stand x 0.02939 0.00344 <.0001 
Elevation 

=.57 
n = 1 195 
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Table C - 4: Logarithmic regression for Regen II - 0 (with trees). The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 
Tabelle C - 4: Logarithmische Regression für Verjüngung II ,,REGEN II" - 0 (mit Bäumen in WZP). Die Tabelle 
enthält die Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die 
Wahrscheinlichkeit für das Zutreffen der Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die 
Anzahl der Beobachtungen angegeben. 

Parameter Parameter Parameter Estimate Standard Error Pr > Jtl Description 

INTERCEPT Intercept 1 .07297 0.021 82 <.0001 

LN(JUNGISH_Tl) Regen I 0.69388 0.00925 <.0001 

ELEV Elevation -0.01 625 0.00073075 <.0001 

STDO T2 No Trees in Angle 0.79406 0.02872 <.0001 Count 

GZD7,9, 10 Growth Zone 7, 9 or -0.05693 0.0063 1 <.0001 1 0  

SCD3,4 Soil Group 3 or 4 0.03686 0.00632 <.0001 

SCD22 Soil Group 22 0 . 159 1 1  0.061 67 0.0099 

SSDI T2 1 Layer Stand -0.39395 0.0 1 136 <.0001 

GVD12 Competing Grass -0.03977 0.01 208 0.0010 Cover 

GVDJ7 Pioneer Vegetation -0.46574 0. 14417 0.001 2  Type 

GVDJ9 Hydrophytic Shrub 0. 1 1785 0.01 655 <.0001 Type 

LN(A_NOSH_Tl) No Browse -0.08797 0.004 1 1  <.0001 

80VERSH_T2 Sum of Overstory -0.03458 0.00162 <.0001 
Growth Classes 

rf=.77 
n = 6266 

8 OVERSH_T2 = STANGSH_T2 + BHISH_T2 + BHIISH_T2 + STARKSH_T2 
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Table C - 5: Logarithmic regression for Regen II - Larch. The table presents the model parameters, their description, 
estirnated coefficient, standard error and p-value. Below the table is the R2 and the number of observations used to 
fit the model. 
Tabelle C - 5: Logarithmische Regression für Verjüngung II ,,REGEN II" - Lärche. Die Tabelle enthält die 
Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das 
Zutreffen der Nullhypothese. Unter der Tabelle wird das Bestimmtheilsmaß und die Anzahl der Beobachtungen 
angegeben. 

Parameter 

INTERCEPT 
LA JUNGIISH Tl - -

LA_JUNGISH_TJ 

ELEV 

STDJ_T2 

STD3 T2 -

STD6_T2 

SCDJ 

SCD5 

G VD14 

GVDJ6 
rf=.71 
n =  8945 

Parameter 
Description 

Intercept 

Larch Regen II 

Larch Regen I 

Elevation 

Norway Spruce 

White Fir 

Stone Pine 

Soil Group I 
Soil Group 5 

Subalpine Dwarf 
Shrub Type 

Fasture Forest Type 

Parameter Estirnate Standard Error Pr > ltl 

-0.44363 0.00701 <.0001 

0.20775 0.00192 <.0001 

0.22942 0.00487 <.0001 

0.00190 0.00055896 0.0007 

-0.01 1 17 0.00455 0.0142 

0. 17559 0.01468 <.0001 

-0. 1 9 1 69 0.05067 0.0002 

-0.08940 0.021 70 <.0001 

0.03043 0.01 258 0.0156 

0.27652 0.03067 <.0001 

0.05388 0.0 1 224 <.0001 
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Table C - 6 :  Logarithmic regression for Regen II - Broadleaved Species. The tab1e presents tbe model parameters, 
tbeir description, estimated coefficient, standard error and p-value. Below tbe table is tbe R2 and the number of 
observations used to fit the model. 

Tabelle C - 6: Logarithmische Regression für Verjüngung II ,,REGEN II" - Laubbäume. Die Tabelle enthält die 
Parameter, ihre Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das 
Zutreffen der Nullhypotbese. Unter der Tabelle wird das B estimmtheitsmaß und die Anzahl der Beobachtungen 
angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 0.20386 0.01 590 <.0001 

LN(BL_JUNGIISH_TJ) Broadleaved Regen 
0.79 1 3 1  0.007 1 1  <.0001 

II 

LN(BL_JUNGISH_Tl) Broadleaved Regen 
0.83675 0.03194 <.0001 

I 

ELEV Elevation -0.01 378 0.00137 <.0001 

STDJO_T2,STDJJ_T2 Beech or üak 0.32726 0.0281 5  <.0001 

STD4l_T2 Mixed Deciduous 0 . 1 6255 0.01750 <.0001 

STD40 T2 Mixed Coniferous 0.02940 0.01 199 0.0142 

GZD3 Growth Zone 3 0.22901 0.05 1 66 <.0001 

GZD6 Growtb Zone 6 0 . 1 1 7 1 3  0.02959 <.0001 

GZD10,19 Growtb Zone 1 0  or 
0.083 1 0  0.0 1 64 1  <.0001 

19 

SCD6 Soil Group 6 -0.09803 0.03873 0.01 14 

GVDI Shade Herb Type 0. 1 1 067 0.01 724 <.0001 

Sparse Moss or 
GVD6, 12 Competing Grass -0.04693 0.01098 <.0001 

Cover Types 

GVD13 Depletion or Litter 
0.422 1 8  0.12736 0.0009 

Erosion Types 

K= .68 
n =  8945 
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Table C - 7: Logarithmic regression for No Browse - 1. The table presents the model parameters, their description, 
estimated coefficient, standard error and p-value. Below the table is the R2 and the number of observations used to 
fit the model. 

Tabelle C - 7: Logarithmische Regression fiir Keine Äsung - 1 .  Die Tabelle enthält die Parameter, ihre 
Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der 
Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTER CE PT Intercept 1 .31537 0.05834 <.0001 

LN(A_NOSH_Tl) No Browse 1 . 12263 0.00984 <.0001 

LN(JUNGIISH_Tl) Regen I! 0.18612 0.00744 <.0001 

INTVAL Interval Value -0.38 183 0.00941 <.0001 

STDO_T2 No Trees in Angle -0.46306 0.02462 <.0001 
Count 

STDJ T2 Norway Spruce 0.05427 0.01000 <.0001 

STDJO_T2 Beech 0.14062 0.02325 <.0001 

SCD5 Soil Group 5 -0.071 85 0.02747 0.0089 

G VD1,4 Shade Herb or 0.05828 0.01201 <.0001 
Moderhumus 

G VD6, 7 Sparse Moss or 0. 1 1 140 0.0 13 13  <.0001 
Moss Types 

QMD_T2 Quadratic Mean -0.00666 0.00044619 <.0001 
Diameter 

C_BA Change in Basal 0.00676 0.00043417 <.0001 
Area 

90VERSH_T2 Sum of Overstory 0.03460 0.00214 <.0001 
Growth C!asses 

n = 9352 

9 OVERSH_T2 = STANGSH_T2 + BHISH_T2 + BHIISH_T2 + STARKSH_T2 
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Table C - 8: Logarithmic regression for No Browse - 0. The table presents the model parameters, their description, 
estimated coefficient, standard error and p-value. Below the table is the R2 and the number of observations used to 
fit the model. 

Tabelle C - 8: Logarithmische Regression fiir Keine Äsung - 0. Die Tabelle enthält die Parameter, ihre 
Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der 
Nullhypothese. Unter der Tabelle wird das Bestimmtheilsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Description 

INTER CE PT Intercept 

JUNGIISH Tf Regen II 

ELEV2 Elevation 

INTVAL Interval Value 

STDJ_T2 Norway Spruce 

GZD9 Growth Zone 9 

GZD15 Growth Zone 1 5  

GZD18,20 Growth Zone 18 or 
20 

SCD3,1 0  Soil Group 3 or 1 0  

Shade Herb, Moist 

GVDJ,2,4,6 Herb, Moderhumus 
or Sparse Moss 

Types 

A_GRSH_Tl Grass Browse 

10 ASUNGSH _ Tl2 Sum ofBrowse 
Classes 

C_BA Change in Basal 
Area 

110VERSH_T22 Sum of Overstory 
Growth Classes 

=.63 
n = 3506 

10 ASUNGSH T1 = A NDSH T1 + A LASH T1 + A STSH T1 
I I  

OVERSH_ :;:2 = ST�GSH=T2 + B�ISH_ .;:z + BHI�H_ T2
-

Parameter Estimate Standard Error Pr > ltl 

-1 .258 1 3  0.08660 <.0001 

0.00500 0.00017934 <.0001 

-0.00135 0.00009560 <.0001 

0.2 1610  0.01 507 <.0001 

0.23583 0.01740 <.0001 

-0.20297 0.02575 <.0001 

0. 16418  0.025 1 1  <.0001 

0.24728 0.02707 <.0001 

0 . 16927 0.02293 <.0001 

0.35621 0.01733 <.0001 

-0.01 577 0.00327 <.0001 

0.01 059 0.00045200 <.0001 

0.01279 0.00089259 <.0001 

0.00380 0.00019050 <.0001 
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Table C - 9: Logarithmic regression for Deciduous Browse - 1 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 9: Logarithmische Regression fiir Laubbäume - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 

INTERCEPT 

LN(A_LASH_Tl) 

ELEV 

INTVAL 

STDJ T2 

GZD6 

GZD9, 10,14 

SCD2 

SCD4 

SCDJJ 

A NOSH Tl 

C BA 

JUNGIISH_Tl2 

120VERSH T2 

if=.65 
n = 1 929 

Parameter 
Description 

Intercept 

Deciduous Browse 

Elevation 

Interval Value 

Norway Spruce 

Growth Zone 6 

Growth Zone 9, 10 
or 14 

Soil Group 2 

Soil Group 4 

Soil Group 1 1  

No Browse 

Change in Basal 
Area 

Regen il 

Sum of Overstory 
Growth Classes 

12 OVERSH_T2 = STANGSH_T2 + BHISH_T2 

Parameter Estimate Standard Error Pr > ltl 

0.97656 0 . 10894 <.0001 

0.95326 0.025 12  <.0001 

-0.03065 0.00341 <.0001 

-0. 1 5666 0.01774 <.0001 

-0.0891 9  0.02432 0.0003 

0. 1 0929 0.03892 0.0050 

0.30488 0.02350 <.0001 

0.08846 0.02949 0.0027 

-0.08364 0.0341 5  0.0144 

0.30241 0.03390 <.0001 

-0.061 09 0.00396 <.0001 

-0.00887 0.00089479 <.0001 

-0.00130 0.00020882 <.0001 

-0.01 125 0.00276 <.0001 
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Table C - 10: Logarithmic regression for Deciduous Browse - 0. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 10 :  Logarithmische Regression für Laubbäume - 0. Die Tabelle enthält die Parameter, ihre 
Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der 
Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > Jtl 
Description 

INTERCEPT Intercept -0.29 1 1 8  0.02683 <.0001 

A_NOSH_TI No Browse -0.02289 0.00077921 <.0001 

ELEV Elevation -0.03384 0.00075900 <.0001 

INTVAL Interval Value 0. 15828 0.0047 1 <.0001 

STDJ_T2 Norway Spruce -0.07993 0.00492 <.0001 

STDJO_T2, STD41 T2 Beech or Mixed 0.31 859 0.01069 <.0001 
Deciduous 

GZD1,4 Growth Zone 1 or 4 -0.10270 0.00797 <.0001 

GZD6, 7,8 Growth Zone 6, 7 or 0. 14791 0.0 1 241 <.0001 8 

GZD9 Growth Zone 9 -0.04023 0.00906 <.0001 

GZDJO Growth Zone 1 0 0.06966 0.0091 6  <.0001 

GZD13 Growth Zone 1 3  0.02216  0.00675 0.001 0  

Shade Herb or 
GVDJ,J9 Hydrophytic Shrub 0.26700 0.00853 <.0001 

Types 

Moist Herb or 
GVD2,4 Moderhumus in 0.06180 0.00561 <.0001 

Conifer Stands 

GVD3 Thermophilie Herb 0.39415  0.03760 <.0001 
Type 

C_BA Change in Basal -0.00303 0.00021 822 <.0001 
Area 

�=.50 
n = 10203 



176 

Table C - 1 1 : Logarithmic regression for Shrub Browse - 1. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 1 1 : Logarithmische Regression fiir Sträucher - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheilsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 1 . 12884 0. 13440 <.0001 

LN(A_STSH_TI) Shrub Browse 1 .02878 0.03023 <.0001 

ELEV Elevation -0.03309 0.00410  <.0001 

INTVAL Interval Value -0. 1 9062 0.02 158 <.0001 

GZD20 Growth Zone 20 -0.26444 0.04659 <.0001 

SCD4 Soil Group 4 -0.24565 0.03645 <.0001 

SCD8 Soil Group 8 0.19524 0.04988 <.0001 

SCD9, 13 Soi! Group 9 or 13 -0. 12076 0.03774 0.0014 

Moderhumus in 

GVD4, 19 Conifer Stands or -0. 1 9228 0.02230 <.0001 
Hydrophytic Shrub 

Types 

A_NOSH_Tl No Browse -0.02888 0.00484 <.0001 

JUNGIISH Tl Regen II -0.03 137 0.00294 <.0001 
Ff=.67 
n = 12 16  
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Table C - 12 :  Logarithmic regression for Shrub Browse - 0. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 12 :  Logarithmische Regression fiir Sträucher - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > Jtl 
Description 

INTER CE PT Intercept 0.03446 0.02033 0.0901 

ELEV Elevation -0.02697 0.0005681 8  <.0001 

A_NOSH_Tl No Browse -0.021 04 0.00060818 <.0001 

INTVAL Interval Value 0.07734 0.00354 <.0001 

STD5, 1 1  Black Pine 0.26079 0.02370 <.0001 

STDJO Beech -0. 1 5841 0.00864 <.0001 

GZD2 Growth Zone 2 0.27944 0.03 10 1  <.0001 

GZD3 Growth Zone 3 0. 14968 0.02667 <.0001 

GZD8,9, 10  Growth Zone 8, 9 or -0.04635 0.00455 <.0001 1 0  

SCDIO Soil Group 1 0  0.09058 0.02587 0.0005 

SCD21 Soil Group 2 1  0.22544 0.0321 8  <.0001 

ASD4, 6 Southeast or 0.05 1 84 0.00475 <.0001 
Southwest Aspect 

SSDJ T2 1 Layer Stands -0.02713 0.004 1 9  <.0001 

Shade Herb or 
GVDJ, J9 Hydrophytic Shrub 0.23994 0.00656 <.0001 

Types 

Thermophilie Herb 
G VD3,14  o r  Subalpine Dwarf 0. 15478 0.01 889 <.0001 

Shrub Types 

GVD6, 7 Sparse Moss or -0.06930 0.00405 <.0001 
Moss Types 

GVD20 Floodplain Type 0.6773 1 0.05969 <.0001 

C_BA Change in Basal -0.001 38 0.00016916 <.0001 
Area 

13GRP GZ Group of Growth 0.01 145 0.00070127 <.0001 
Zones 

n =  1 1 127 

13 GRP _GZ = GZD1 3  OR GZD14 OR GZD1 5  OR GZD1 8  
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Table C - 13 :  Logarithmic regression for Raspberry Browse - 1 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 13 :  Logarithmische Regression fiir Himbeere - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten KoeffiZienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTER CE PT Intercept 1 . 175 17  0. 14944 <.0001 

LN(A_HISH_Tl) Raspberry Browse 0.87858 0.03255 <.0001 

ELEV Elevation -0.03088 0.0041 6  <.0001 

INTVAL Interval V alue -0.22450 0.02406 <.0001 

STDJ_T2 Norway Spruce -0. 1 0280 0.02729 0.0002 

STD4_T2 Scots Pine 0.28576 0.06649 <.0001 

GZD1,4 Growth Zone 1 or 4 0 . 10080 0.02939 0.0006 

SCDJ4,17,18 Soil Group 14, 17 or -0.1 6499 0.04245 0.0001 1 8  

SCD22 Soil Group 22 -0.42867 0 . 102 1 5  <.0001 

Moderhumus or 
G VD4, 19 Hydrophytic Shrub 0.39081 0.02938 <.0001 

Types 

A_NOSH_Tl No Browse -0.03775 0.00649 <.0001 

JUNGIISH_Tl Regen II -0.03869 0.00299 <.0001 

=.69 
n =  1 220 
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Table C - 14: Logarithrnic regression for Raspberry Browse - 0 . Tbe table presents tbe model parameters, tbeir 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and tbe nurober of 
observations used to fit the model. 

Tabelle C - 14: Logarithmische Regression fur Himbeere - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fur das Zutreffen der Nullhypotbese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estirnate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept -0.08873 0.02136 <.0001 

A_NOSH_Tl No Browse -0.01 139 0.00060897 <.0001 

ELEV Elevation -0.0 13 19  0.00055240 <.0001 

INTVAL Interval Value 0.07240 0.0035 1 <.0001 

STDO T2 No Trees in Angle 0.14383 0.00744 <.0001 
Count 

GZDJ, I9 Growtb Zone 1 or 0.0341 9  0.00660 <.0001 19 

GZD2,3,4,7,21 Growth Zone 2, 3, 0 . 1 1434 0.00891 <.0001 4, 7, 2 1  

SCD6 Soil Group 6 -0.05651 0.01308 <.0001 

SCD21 Soil Group 21 -0.21422 0.01924 <.0001 

SCDJ 7, 18, 19,20 Soil Group 17, 1 8, -0.09948 0.00414 <.0001 19, 20 

SCD9, JJ ,l3 Soil Group 9,  1 1 , 1 3  0.06139 0.00833 <.0001 

GVDJ9 Hydrophytic Shrub 0.79334 0.01 379 <.0001 

Shade Herb, 
GVDJ,4,20 Moderhumus or 0.09621 0.00398 <.0001 

Floodplain Types 

JUNGIJSH Tl Regen li -0.0071 2  0.00069284 <.0001 

140VERSH T2 Sum of Overstory -0.00744 0.00074670 <.0001 
Growtb Classes 

C_BA Change in Basal -0.00437 0.00020200 <.0001 
Area 

=.41 
n = 1 2033 

14 OVERSH_T2 = STANGSH_T2 + BHISH_T2 + BHIISH_T2 + STARKSH_T2 
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Table C - 15 :  Logarithmic regression for Blueberry Browse - 1 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 15 :  Logarithmische Regression für Heidelbeere - 1 .  Die Tabelle enthält die Parameter, ihre 
Beschreibung, die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der 
Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 0. 1 8 1 89 0.07259 0.0123 

LN(A_HESH_Tl) Blueberry Browse 1 . 17272 0.01427 <.0001 

ELEV Elevation 0.02920 0.00165 <.0001 

SLPE Slope -0.02342 0.00300 <.0001 

INTVAL Interval Value -0.14534 0.01 209 <.0001 

C_BA Change in Basal 0.003 1 2  0.00061973 <.0001 
Area 

STANGSH_T2 Pole Stand -0.00986 0.00251  <.0001 

STDO T2 No Trees in Angle -0. 1 3414 0.02153 <.0001 
Count 

STDI T2 Norway Spruce -0.04490 0.0 13 1 1  0.0006 

GZDI7 Growth Zone 17  -0. 1 1224 0.03 136 0.0003 

SCD2 Soil Group 2 -0.08853 0.02494 0.0004 

SCD6 Soil Group 6 0. 1 1 10 1  0.033 14 0.0008 

Shade Herb, Moist 

GVDJ,2, 12, 1 8  Herb, Competing -0.28435 0.06896 <.0001 
Grass Cover or Seep 

Vegetation Types 

GVD4 Moderhumus in -0.34816 0.023 16  <.0001 
Conifer Stands 

GVDI9 Hydrophytic Shrub -0.478 16  0.05294 <.0001 
Type 

=.74 
n = 3812  
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Table C - 1 6: Logarithmic regression for Blueberry Browse - 0 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 1 6: Logarithmische Regression für Heidelbeere - 0. Die Tabelle enthält die Parameter, ihre 
Beschreibung, die geschätzten KoeffiZienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der 
Nullhypothese. Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 

INTERCEPT 

ELEV 

SLPE 

JUNGISH_Tl2 

INTVAL 

G VD6, 14 

SCD2 

STD41 T2 

ASD2,8 

G VD4 

STDO_T2 

=.44 
n =  9 166 

Parameter 
Description 

Intercept 

Elevation 

Slope 

Regen I 

Interval Value 

Sparse Moss or 
Subalpine Dwarf 

Shrub Types 

Soil Group 2 

Mixed Deciduous 

Northeast or 
Northwest Aspect 

Moderhumus 

No Trees in Angle 
Count 

Parameter Estimate Standard Error Pr > ltl 

-0.4261 9  0.0221 5  <.0001 

0.02928 0.00073594 <.0001 

-0.02202 0.00086895 <.0001 

-0.00067503 0.00007529 <.0001 

0.061 67 0.00388 <.0001 

0.70433 0.01326 <.0001 

0 .14737 0.0052 1 <.0001 

-0.01 671  0.0051 0  0.00 1 1  

0.06189 0.00489 <.0001 

-0.02668 0.00450 <.0001 

0.03038 0.00624 <.0001 
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Tab1e C - 17: Logarithmic regression for Erica Browse -1 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-va1ue. Be1ow the tab1e is the R2 and the number of 
Observations used to fit the model. 

Tabelle C - 17: Logarithmische Regression für Erika - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 3.07178 0.23845 <.0001 

A_ERSH_Tl Erica Browse 0 . 1 0926 0.01263 <.0001 

WTRG Water Regime -0.28099 0.03708 <.0001 

INTVAL Interval Value -0.39848 0.04088 <.0001 

GZDJ Growth Zone 1 -0.35946 0 .10343 0.0006 

GZD14, 1 7  Growth Zone 1 4  or 
0.20267 0.05 135 <.0001 

17 

GZD20 Growth Zone 20 -0.65060 0 . 16602 0.0001 

G VDJO Calluna Type 0.30275 0.08625 0.0005 

G VDJ5 Erica Type 0.59298 0.05520 <.0001 

A_NOSH_Tl No Browse -0.04688 0.01333 0.0005 

JUNGIISH_Tl Regen II -0.01452 0.00672 0.0314 

=.80 
n = 3 1 8  
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Table C - 1 8 :  Logarithmic regression for Herb Browse - 1 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the nurober of 
Observations used to fit the model. 

Tabelle C - 1 8 :  Logarithmische Regression fiir Kräuter - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estirnate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 0.99962 0.05663 <.0001 

LN(A_KRSH_Tl) Herb Browse 0.84888 0.01090 <.0001 

WTRG Water Regime 0.05 132 0.00800 <.0001 

INTVAL Interval V alue -0.21475 0.00926 <.0001 

STD40_T2 Mixed Coniferous 0.04778 0.01086 <.0001 

STD41 T2 Mixed Deciduous 0.10296 0.0 1 330 <.0001 

GZDJ,4 Growth Zone 1 or 4 -0.26931 0.0 1 925 <.0001 

GZD9, 10, 1 7  Growth Zone 9 ,  1 0  
0. 1 6931 0.01 030 <.0001 

or 17 

GZD12 Growth Zone 12 0.1 1405 0.02295 <.0001 

SCD4 Soil Group 4 -0. 1 8 1 60 0.01489 <.0001 

Luxuriant Moss, 

G VD5,6,8,15 Sparse Moss, 
-0.41 888 0.01 838 <.0001 

Avene/la type or 
Erica Type 

QMD T2 Quadratic Mean 
0.00337 0.00032566 <.0001 

Diameter 

JUNGISH_TJ, 
Regen I, Regen II -0.0 1 6 1 7  0.00141 <.0001 

JUNGIISH_Tl 

=.61 
n = 7767 
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Table C - 19:  Logarithmic regression for Herb Browse - 0. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 19: Logarithmische Regression fiir Kräuter - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, 
die geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept -0.36231 0.04791 <.0001 

A NOSH Tl No Browse -0.02769 0.00126 <.0001 

QMD_T2 Quadratic Mean 
0.00368 0.00032639 <.0001 

Diameter 

C_BA Change in Basal 
-0.00249 0.00041220 <.0001 

Area 

STD41 T2 Mixed Deciduous 0.07403 0.01944 0.0001 

INTVAL Interval Value 0.16726 0.00863 <.0001 

GZDJ Growth Zone 1 -0. 12820 0.0 1 069 <.0001 

GVD6 Sparse Moss Type -0.41282 0.0 1 028 <.0001 

GVD5 Luxuriant Moss 
-0.54448 0.0 1 676 <.0001 

Type 

GVD2 Moist Herb Type 0.14096 0.03386 <.0001 

Shade Herb, Pasture 
Forest, Seep 

GVD1,16, 18,19 Vegetation and 0.39017 0.02054 <.0001 
Hydrophytic Shrub 

Types 

SCD14 Soil Group 14 0.27900 0.05075 <.0001 

SCD3 Soil Group 3 0.06178 0.01744 0.0004 

SCD1 7,18,19,21,22 Soil Group 17, 1 8, 
0.44555 0.0 1 8 5 1  <.0001 

19, 21  or 22 

,q-?=,58 
n = 4674 
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Table C - 20: Logarithmic regression for Fern Browse - 1. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the nurober of 
observations used to fit the rnodel. 

Tabelle C - 20: Logarithmische Regression fiir Farne - 1 .  Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimrntheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > !tl 
Description 

INTERCEPT Intercept 1 .57391 0.09862 <.0001 

LN(A_FASH_Tl) Fem Browse 0.97814 0.02227 <.0001 

ELEV Elevation 0.03176 0.00212 <.0001 

WTRG Water Regime 0.06333 0.01577 <.0001 

INTVAL Interval Value -0.46153 0.01407 <.0001 

GZDJ,8 Growth Zone 1 or 8 0.20629 0.02200 <.0001 

GZD4,12 Growth Zone 4 or 
0.17028 0.02274 <.0001 

12 

GZD1 7 Growth Zone 1 7  -0. 1 8428 0.03221 <.0001 

SCD18 Soil Group 1 8  -0.07866 0.02745 0.0042 

ASD4,5,6 Southeast, South, 
-0. 17847 0.0 1 8 1 8  <.0001 

Southwest Aspect 

GVD4 Moderhumus in 
0.19063 0.01484 <.0001 

Conifer Stands 

GVD12 Cornpeting Grass 
-0.20948 0.03083 <.0001 

Cover 

QMD_T2 Quadratic Mean 
0.00 1 3 1  0.00046286 0.0049 

Diameter 

STARKSH_T2 Old Growth Stand 0.0 1 044 0.00478 0.0292 

Ff=.70 
n =  1 899 
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Table C - 2 1 :  Logarithrnic regression for Fern Browse - 0. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the nurober of 
observations used to fit the model. 

Tabelle C - 2 1 :  Logarithmische Regression für Farne - 0 .  Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > Jt/ 
Description 

INTERCEPT Intercept -0. 1 1 226 0.00591 <.0001 

WTRG2 Water Regime 0.00700 0.00053497 <.0001 

A_NOSH_Tl2 No Browse -0.00068677 0.00004381 <.0001 

STDJ_T2 Norway Spruce 0.05572 0.00381 <.0001 

GZD1,3 Growth Zone 1 or 3 -0.01 708 0.005 1 1  0.0008 

GZD8,12 Growth Zone 8 or 
0.23303 0.0 1 138 <.0001 

12 

GZDJJ Growth Zone 1 1  0. 1 9476 0.00998 <.0001 

GZD18,20 Growth Zone 18 or 
-0.07152 0.00440 <.0001 

20 

SCD4 Soil Group 4 0.06868 0.00443 <.0001 

SCDJ4 Soil Group 14 0.50587 0.02381 <.0001 

ASDJ,2,8 North, Northeast or 
0. 14689 0.00400 <.0001 

Northwest Aspect 

GVD4 Moderhumus in 
0. 19 168 0.00552 <.0001 

Conifer Stands 

GVD19 Hydrophytic Shrub 
0.23263 0.00853 <.0001 

Type 

GVD2 Moist Herb Type 0.01733 0.00549 0.001 6  

QMD_T2 Quadratic Mean 
0.00201 0.00012290 <.0001 

Diameter 

=.37 
n =  9982 
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Table C - 22: Logarithmic regression for Grass Browse - 1 .  The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 22: Logarithmische Regression für Gräser - 1. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten KoeffiZienten, den Standardfehler und die Wahrscheinlichkeit für das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ltl 
Description 

INTERCEPT Intercept 0.58528 0.05374 <.0001 

LN(A_GRSH_Tl) Grass Browse 1 .00535 0.01 1 52 <.0001 

ELEV Elevation 0.03223 0.00 1 1 8  <.0001 

INTVAL Interval Value -0.20534 0.00907 <.0001 

GZDJ Growth Zone 1 0 .1 1445 0.01775 <.0001 

GZDJJ, J6 Growth Zone 11 or 
-0. 17516 0.01682 <.0001 

1 6  

GZD18,20 Growth Zone 18 or 
-0.09194 0.01662 <.0001 

20 

SCD3 Soil Group 3 -0.07597 0.01 588 <.0001 

SCDJ7 Soil Group 17 0 .1 1799 0.01336 <.0001 

Moist Herb or 
GVD2,16 Pasture Forest 0.19244 0.01404 <.0001 

Types 

Thermophilie Herb, 
Avene/la Type, 

Sphagnum-

G VD3,8, 1 1, 12,15, 18 Vaccinium-Avenella 
0.22263 0.01250 <.0001 Type, Cornpeting 

Grass Cover, Erica 
or Seep Vegetation 

Types 

Depletion or Litter 
GVDJ3,20 Erosion sites or 0.40132 0.06190 <.0001 

Floodplain Types 

C_BA Change in Basal 
-0.00592 0.00045481 <.0001 

Area 

JUNGIISH_Tl Regen il -0.01731 0.00127 <.0001 

STANGSH_T2 Pole Stand -0.01 834 0.00175 <.0001 

=.70 
n = 7767 
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Table C - 23: Logarithmic regression for Grass Browse - 0. The table presents the model parameters, their 
description, estimated coefficient, standard error and p-value. Below the table is the R2 and the number of 
observations used to fit the model. 

Tabelle C - 23: Logarithmische Regression fiir Gräser - 0. Die Tabelle enthält die Parameter, ihre Beschreibung, die 
geschätzten Koeffizienten, den Standardfehler und die Wahrscheinlichkeit fiir das Zutreffen der Nullhypothese. 
Unter der Tabelle wird das Bestimmtheitsmaß und die Anzahl der Beobachtungen angegeben. 

Parameter 
Parameter 

Parameter Estimate Standard Error Pr > ftf 
Description 

INTERCEPT Intercept -0.46701 0.05267 <.0001 

ELEV Elevation 0.04443 0.00145 <.0001 

SQRT(A_NOSH_Tl} No Browse -0. 1 5094 0.00691 <.0001 

INTVAL Interval Value 0.17079 0.00906 <.0001 

STDO_T2, STD3_T2 No Trees in Angle 
0.27363 0.01 780 <.0001 

Count or Larch 

STDJ_T2 Norway Spruce 0.03096 0.01 066 0.0037 

STDJ O_T2 Beech -0.22577 0.01 830 <.0001 

GZDJ Growth Zone 1 0.20637 0.01425 <.0001 

GZD17 Growth Zone 17  -0.24322 0.02097 <.0001 

GVD4 Moderhumus in 
-0. 1 5828 0.01014 <.0001 

Conifer Stands 

A venella Type, 

GVD8,12, 16 Competing Grass 
0.72471 0.04325 <.0001 

Cover or Pasture 
Forest Types 

GVD18 Seep Vegetation 
0.274 1 1  0.06377 <.0001 

Type 

C_BA Change in Basal 
-0.00863 0.00041293 <.0001 

Area 

LN(JUNGIISH_Tl) Regen II -0.05333 0.00532 <.0001 

LN(STANGSH_T2) Pole Stand -0.08823 0.005 13 <.0001 

�=.53 
n = 4369 


