A Modular Sensor Fusion Approach for Agricultural Machines

<u>Sebastian Blank</u>⁽¹⁾, Georg Kormann⁽²⁾, Karsten Berns⁽¹⁾

⁽¹⁾ Robotics Research Lab University of Kaiserslautern, Germany

⁽²⁾ John Deere European Technology Innovation Center Kaiserslautern, Germany

Overview

- State-of-the-art: data handling
- Challenges
- Derived Requirements
- A modular approach to data handling
- Conclusions/Outlook

State-of-the-art: Data Handling

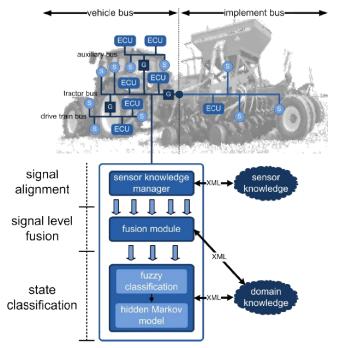
- Primary applications (today)
 - telematics solutions
 - documentation
- Assumptions:
 - single vehicle centric \rightarrow does not reflect actual usage pattern
 - static configuration \rightarrow unable to process data from implement/other machines
- Data acquisition:
 - hard coded: snapshot reflects only limited number of data sources
 - averaging interval (typically 30s to few minutes) \rightarrow potential is wasted
 - bottleneck: data transfer from machine to off-board processing unit
 - − no/little data fusion \rightarrow conflicting data

A Modular Sensor Fusion Approach for Agricultural Machines

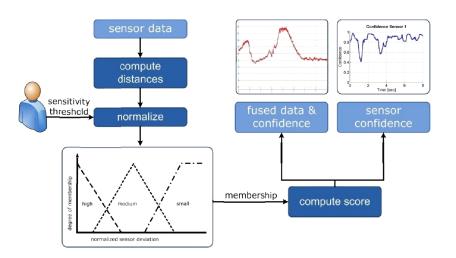
Motivation - Challenges

- Heterogeneous machines
 - large number of equipment OEMs \rightarrow no common standard
 - isolated subsystems \rightarrow limited machine-wide communication
- Future increase in:
 - number of data sources (sensors)
 - need for documentation
 - degree of automation \rightarrow (semi-)autonomous machines
- Further challenges
 - complexity challenge: current SW paradigm cannot keep up with HW development
 - multiple sensor readings of same physical properties (\rightarrow inconsistent data)
 - architecture gap: no mechanism for resolving data conflicts
 - no system-wide data visibility & accessibility
 - challenge will become even harder in the future

Derived Requirements

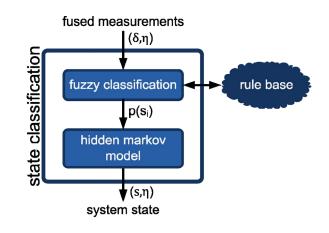

- Uniform data handling / aggregation needed
 - scalable with host machine (low spec. vs. high spec.)
 - machine wide
 - high flexibility: modular design
 - automatic reconfiguration: no operator interaction
 - lean architecture & algorithms (limited comp. power)
 - paradigm shift: vehicle centric \rightarrow data centric (open interfaces)
- Potential benefits
 - robustness: reliable sensor data (utilize redundancy)
 - task specific machine data processing (e.g. vehicle state \leftrightarrow implement)
 - fully automatic: no need for manual configuration
 - ease future system design: abstraction & holistic concepts

"We are drowning in information but starved for knowledge" (John Naisbitt)


Modular Approach To Data Handling

- Tasks
 - system-wide & uniform approach for data management
 - ensure data consistency (low level fusion)
 - Integrated data processing/aggregation
- Data scopes
 - hardware information
 - domain/process knowledge
 - little component knowledge inhibits usage of standard fusion approaches (e.g. Kalman filters)
- Architecture
 - inspired by: biological fusion (human) & swarm intelligence
 - 3 levels: alignment, low-level fusion, high-level data aggregation/interpretation
 - data centric: machine border dissolve
 - lean algorithms

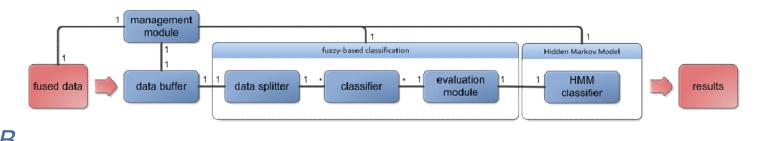
Low-Level Fusion



- Demand imposed by application:
 - robustness (failure & adaptation to changing environment conditions)
 - low computational demand
 - reliable & accurate results
- Fuzzy voter approach
 - no assumptions/models required
 - utilizes relative sensor distance
 - computational efficient: O(n²)
 - excellent robustness & accuracy
 - result + confidence metric (sensor monitoring)
- Error detection/correction
 - plausibility limits (domain knowledge)
 - dynamic thresholding (rejection mechanism)
 - adaptive weights assignment

Feature-Level Data Aggregation

- 2-stage approach
 - fuzzy classifier (deterministic) \rightarrow state probabilities
 - Hidden Markov Model (probabilistic) \rightarrow optimize w.r.t. transition sequences
 - domain knowledge used to extract rule base
 - scales well with machine complexity
 - real-time capable with modest comp. power
- Fuzzy classification
 - intuitive & computational inexpensive
 - interface to fusion: result confidence is considered
 - easily expandable (new/different states)
- Hidden Markov Model (HMM)
 - input: output of fuzzy classification
 - offers more expressiveness (notion of time \rightarrow sequences)
 - computational inexpensive (pre-classified vs. raw sensor data)



Implementation

- Components implemented in Matlab/Simulink
- Modular SW design

THE ROBOTICS RESEARCH LAB

- Interaction via lean interfaces
- Independent loop times for low/high level fusion
 - low level: loop time set dynamically per sensor group (sensor update rate) [approx. 1 -1000 ms]
 - high level: fixed loop time at startup (buffer mechanism) [approx. 5 ms - 100 sec]

sensor

data

plausibility

check

algorithm

selection

fusion algorithms

fuzzy voter

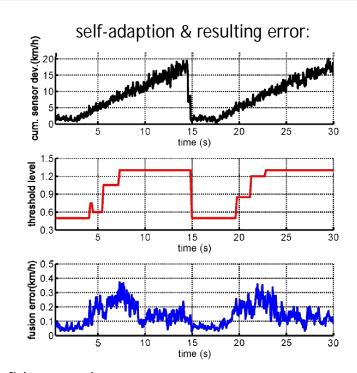
adaptive

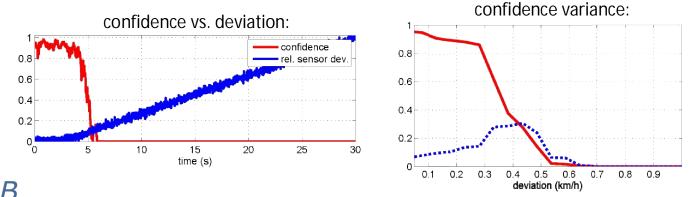
weighted

average

single sensor processing result merger

results


A Modular Sensor Fusion Approach for Agricultural Machines


Preliminary Test

Simulated tests

THE ROBOTICS RESEARCH LAB

- focus: low level fusion algorithms (accuracy/precision & robustness)
- full system feasibility test: component integration
- Rapid Prototyping Tests
 - so far: single component tests
 - modified utility vehicle + implement (reconf.)
 - HW platform: dSpace Autobox (loop time: 1ms)

A Modular Sensor Fusion Approach for Agricultural Machines

Conclusions

- Advantages
 - self-adjusting sensor fusion architecture
 - global (consistent) information scope
 - platform independent (generic) approach \rightarrow reuse
 - machine complexity hidden from user (components supply meta information)
 - matches requirements of Ag applications
 - mapping of HW dynamics into data handling approach
 - embedded in iGreen Infrastructure (meta data/result exchange)
 - integrated management solution for multicolored fleets
- Outlook
 - full system test on real machine by end of 2011
 - potential as supplement to ISOBUS standard

Thank you for your attention !

SPONSORED BY THE

Federal Ministry of Education and Research (BMBF) in the context of the project iGreen (No.: 01 IA08005 P).

