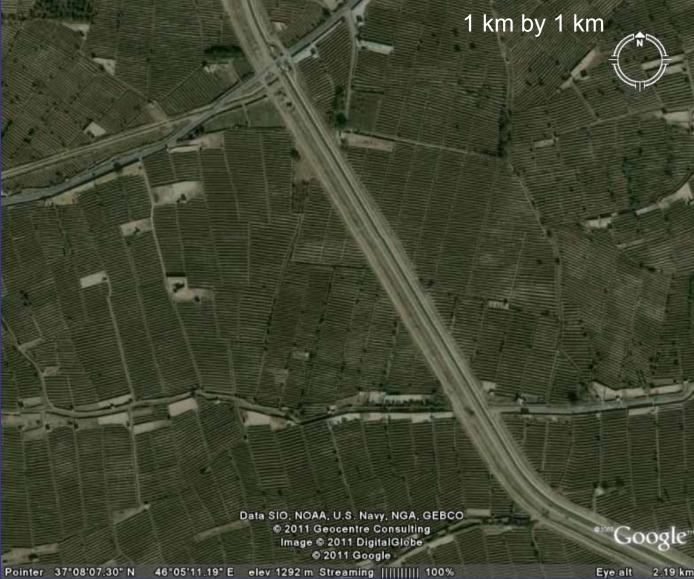


Separation whole raisin berries by physical and aerodynamic properties

By: Akbar Arabhosseini

Karimi N.; (M.Sc. Thesis) Kianmehr; MH. Khazaei A.


Field area: 850,000 ha

Research area

Farms

4

Eye alt 2.19 km

Producing Methods for raisins

• On the trees

• Spreading on trays or ground

• Immersing in hot water

• Hanging in shadow

Producing Methods for raisins

Golden Bleached

Sun Dried

Sultana

- Turkey 1/3
 USA 15%
 Iran 15%
- Greece
- Chili
- Others 20%

8%

7%

□ I ran is the 2nd or 3rd raisin producer

- Low quality
- No interest by costumers
- No success in global market competition
- Short shelf life
- Economical disadvantageous

Exportation problems

- Transportation
 Packing
 Storage
 Bureaucracy
 - Less sight about international market

- Grading standard
 - Raisins attached together
 - Damaged raisins
 - Immature raisins
 - Tailed raisins
 - Extra materials
 - MC level
 - Infections

- Physical properties
- Aero dynamical properties
- Distribution

Modify the current processing systems

- Golden bleached raisins
- 110 random samples
- Whole and defected raisins
- 16% moisture content

- Moisture content
- Dimensions
- Mean diameter
- Projected area
- Bulk density
- True density
- Porosity
- Mass

Length, Width and Thickness $D_g = (LWT)^{0.333}$ $A_p = (\pi/4)D_g^2$

$$\label{eq:epsilon} \begin{split} \epsilon &= 1\text{-}\left(\rho_b \ / \ \rho_f\right) \\ 0.01 \ g \end{split}$$

by oven

- Coefficient of friction
- Static and dynamic coefficients
- On wood, iron steel and galvanized steel sheets
- At 16% MC

Experimental Terminal Velocity, V_t

• **Drag coefficient** $C_d = mg/v_t^2 \rho_a A_p$

50 samples for whole and defected berries

• Static and dynamic friction properties

Characteristics	Replication number	Mean value	Range of values	Standard deviation
Coefficient of static friction on				
Unpolished wood	5	0.49	0.47 - 0.51	0.01
Galvanized steel sheet	5	0.39	0.34 - 0.43	0.03
Iron steel sheet	5	0.45	0.41 - 0.46	0.02
Polyethylene	5	0.41	0.39 - 0.42	0.02
Coefficient of dynamic friction on				
Unpolished wood	5	0.45	0.43 - 0.47	0.01
Galvanized steel sheet	5	0.37	0.33 – 0.39	0.02
Iron steel sheet	5	0.42	0.32 - 0.47	0.05
Polyethylene	5	0.39	0.35 - 0.44	0.04
Dynamic angle of repose (°)				
Polished wood	10	17.11	16.28 - 18.21	1.05
Galvanized steel sheet	10	21.02	19.76 – 21.16	0.8
Iron sheet	10	21.36	21.15 - 22.34	0.6
Static angle of repose (°)	5	33.45	33.05 - 34.13	0.9

Aerodynamically properties

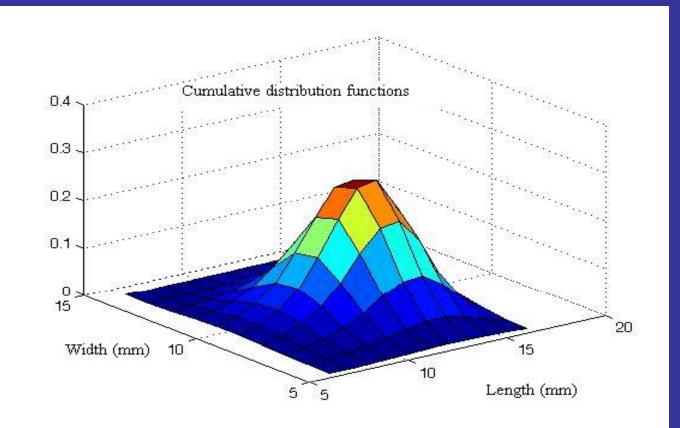
Characteristics	Replication number	Mean value	Range of values	Standard deviation
Whole raisin berries				
Experimental terminal velocity (m/s)	50	8.04	6.78 – 9.61	1.02
Drag coefficient	50	0.498	0.18 - 0.43	0.05
Demolished raisin berries				
Experimental terminal velocity (m/s)	50	6.18	5.21 - 7.31	1.21
Drag coefficient	50	0.701	0.06 - 1.15	0.26

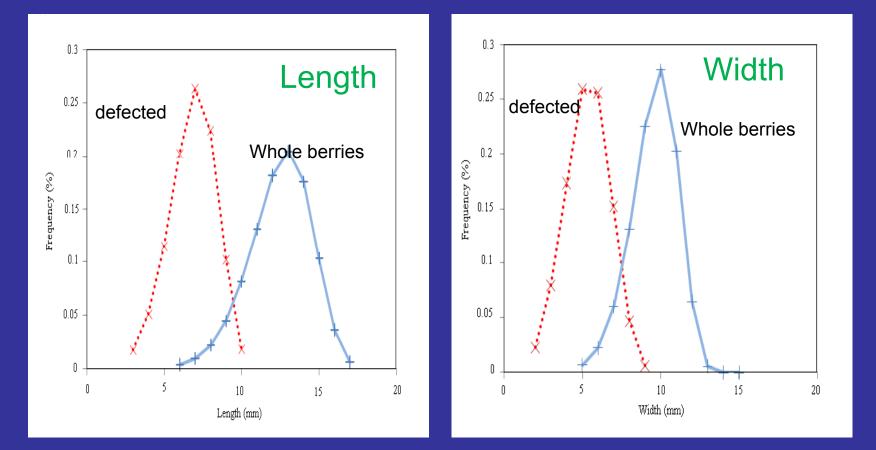
• Dimensions

Dimention (mm)	Sample type	Samples	Mean value	Range	Standard deviation
Length	Whole	110	12.45	6.4 – 16.36	2.03
	Defected	110	8.6	3.91 - 9.86	1.2
Width	Whole	110	9.59	5.36 - 14.16	1.5
	defected	110	5.34	2.06 - 8.67	1.37
Thickness	Whole	110	6.93	4.01 – 10.38	1.26
	defected	110	2.88	1.09 – 4.89	0.96
Projected area (mm ²)	Whole	110	70.08	31.53-120.26	19.08
	defected	110	20.71	4.94-42.93	8.06

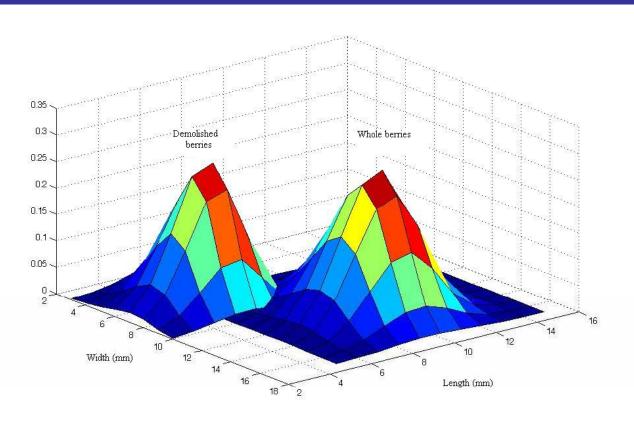
• Density properties

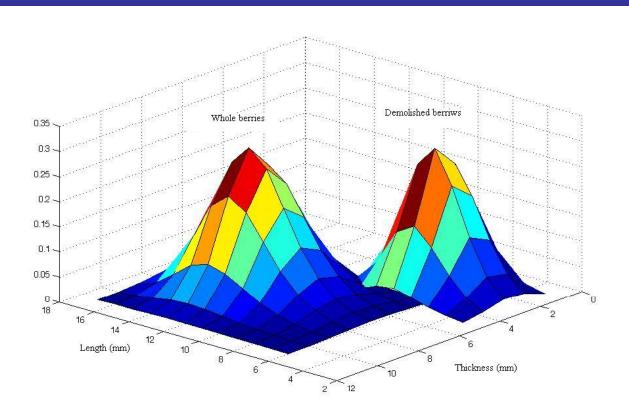
Characteris tics	Sample type	Replication number	Mean value	Range of values	Standard deviation
Bulk density (kg/m ³)	Whole	10	763.23	755.45 – 771.25	11.25
	Defected	10	592.41	585.35 – 601.73	6.43
True density (kg/m ³)	Whole	10	1306.36	1251.41-1342.86	19.84
	Defected	10	1181.67	1168.37-1218.71	12.13
Porosity (%)	Whole	10	41.53	39.81- 43.03	2.01
	defected	10	50.61	49.12 – 51.78	2.6


Distribution functions


Cumulative frequency Weibull and Normal distribution

Length (mm), li	Cumulative frequency	Cumulative Weibull Distribution	Cumulative Normal Distribution	Width (mm) wi	Cumulative frequency	Cumulative Weibull Distribution	Cumulative Normal Distribution
6.4	1	0.46	0.14	5.36	1	0.11	0.23
7.4	1	1.35	0.64	6.36	1	1.67	1.53
8.4	4	3.42	2.3	7.36	12	7.80	6.76
9.4	9	7.67	6.64	8.36	22	21.79	20.42
10.4	19	15.43	15.62	9.36	48	43.90	43.64
11.4	31	27.98	30.25	10.36	76	68.68	69.38
12.4	46	45.48	49.01	11.36	97	87.65	87.96
13.4	77	65.62	68.01	12.36	107	96.92	96.71
14.4	91	83.51	83.16	13.36	109	99.57	99.39
15.4	101	94.69	92.69	14.36	110	99.97	99.92
16.4	110	99.02	97.41	-	-	-	


CDF, for whole raisin berries at %16 (d.b).


Frequency distribution at %16 (d.b).

CDF, for whole and defected raisin berries at %16 (d.b).

CDF, for whole and defected raisin berries at %16 (d.b).

Conclusion

- The results of this research are applicable for processing of raisins
- The overlap for different parameters of the whole and defected raisin berries helps to define a reasonable threshold line for different goals.
- The two-variable Weibull distribution function is the best computational tools for characterizing raisin berries.
- From economical point of view and possibilities either the aerodynamic or physical properties can be used for different process steps

Thank you for your attention

- Turkey 1/3
- USA 15%
- Iran 15%
- Greece 8%
- Chili 7%
- 80% of whole

Manufacturing processes

Effective parameters

