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The Survival Kit is a Fortran 90 Software intended for survival analysis using proportional

hazards  models and their extension to frailty models with a single response time. The hazard

function  is described as the product of a baseline hazard function and a positive (expo-

nential)  function of possibly time-dependent fixed and random covariates. Stratified Cox,

grouped data and Weibull models can be used. Random effects can be either log-gamma

or  normally distributed and can account for a pedigree structure. Variance parameters are
eywords:

urvival analysis

roportional hazards

railty  model

orrelated random effects

estimated  in a Bayesian context. It is possible to account for the correlated nature of two

random  effects either by specifying a known correlation coefficient or estimating it from the

data. An R interface of the Survival Kit provides a user friendly way to run the software.

©  2013 Elsevier Ireland Ltd. 

all  treatment effect. When required, the first three moments of
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.  Introduction

he most popular class of survival models is the class of
roportional hazard models [1,2], where the hazard of an

ndividual  at time t is described as the product of the base-
ine  function and of a positive term which is an exponential
unction of a vector of covariates w′ multiplied by vector of
egression  parameters �. Frailty models are an extension of
tandard  survival analysis models which allows to account
or  unobserved random heterogeneity [3] or equivalently, to
nclude random effects. These account for an unobserved
nvironmental or genetic effect affecting the hazard of the
ndividual.  When two random effects are included (e.g., [4]),
hese  can be independent from each other or related to some
egree,  leading to the need to estimate correlated random

ffects. Analyses failing to account for this underlying correla-
ion  in survival times are likely to underestimate the variances
f  parameters [5].

∗ Corresponding author. Tel.: +43 1 47654 3259.
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The aim of this paper is to introduce “the Survival Kit”,
software for survival analysis capable to handle very large
amounts  of data, with the possibility to account for their right
censored  or left truncated status in proportional hazards mod-
els.  The fixed, random and stratification variables can be time
dependent.  The estimation of variance components is done
in  a Bayesian framework and is based on a Laplace approxi-
mation  of the marginal posterior density of these parameters,
from  which a modal point estimate can be obtained. Various
modeling possibilities are shown in [4], including stratified
and  frailty survival models with simultaneous estimation of
variances  for two random effects, center and interaction of
treatment  by center. The first random effect corrected for
deviation  centers from the overall baseline hazard, while the
second  was to deal with deviation of each center from the over-
this  posterior density can be estimated and the full posterior
density  can be approximately constructed and visualized. The
program  was  originally written in Fortran 90 for computational
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efficiency on very large datasets. An R interface was  added to
provide easier usage and graphical capabilities.

In Section 2 we  present the statistical model. In Section
3,  the Survival Kit is described and in Section 4 two illustra-
tive  applications are presented, one using real infant mortality
data,  the other using simulated data, and computing variances
and  covariance of correlated random effects.

2.  Theoretical  background  and
computational  methods

This section presents a brief overview of the methods used in
the Survival Kit. More  detailed information can be found in
[4,6].

Proportional hazard models and their extension to include
random  effects describe the hazard function of each individual
�(t)  (i.e., its limiting probability of dying at time t, given it is
still  alive just prior to t) as the product of a baseline hazard
function and a positive (exponential) function of explanatory
covariates.

The  model is specified as:

�(t; x(t), z(t)) = �0(t) exp{x(t)′� + z(t)′s} (1)

where � and s are vectors of fixed regression coefficients and
random  effects. The second part, exp{x(t)′� + z(t)′s}, repre-
sents  a stress-dependent term specific to the animals with
fixed  covariates x and random covariates z. Both the fixed
and  random covariates can be time dependent. Only stepwise
functions  of time are considered for x(t) or z(t), i.e., x(t) and z(t)
are supposed to remain constant over intervals [ti, ti + 1[. The
first  part �0(t) is the baseline hazard function. It is left unspec-
ified  in the Cox model [1] or it can take a parametric form as
in  Weibull model shown in (2).

�0(t) = ��(�t)�−1 (2)

where � and � are the shape and scale parameters of the
Weibull  distribution [2].

The baseline hazard function can be unique or can differ
between groups of individuals. The time scale can be divided
into  several intervals using stratified models, with specific
baseline  hazards with a separate origin for each, defining a
piecewise  (e.g., piecewise Weibull) model. This is useful to
evaluate  hazards with a repetitive pattern. One example is
the  modeling of culling in dairy cows which clearly follows
a  particular within lactation pattern [7].

In case of discrete time scale (i.e. with very few distinct time
values),  there are often many  failures occurring at the same
time,  leading to “ties” between failure times. In such case, the
Cox  model is no longer valid: if m failure times are tied at time
l  and n individuals are at risk just prior to l, the partial like-
lihood  contribution involves a summation over all possible
subsets  of size m from the n at risk, which makes the choice of
a  Cox model for the discrete time measures inadequate and

computationally demanding. Prentice and Gloeckler [8] pro-
posed  another approach, the “grouped data model” based on
[9].  They assumed that the actual failure times occur in a num-
ber  of intervals (e.g., years) [0 = �0, �1), [�1, �2), . . . [�k−1, �k), . . .
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 503–510

and that the risk of failure is constant within each interval. All
failures occurring in the same interval [�k−1, �k) are “grouped”,
and the attached failure time is k. They also assumed that
censoring occurs at the end of each interval. The estimation
procedure they proposed was  included in the Survival Kit,
using  a reparameterization described in [10]. Indeed, it is pos-
sible  to rewrite the model as an exponential regression model
including  an additional time-dependent effect changing at the
beginning  of each new interval (see [10] for details).

Technically, the hyperparameters of the prior distribution
of  random effects (e.g., genetic variance) are estimated from
their  marginal posterior density [6]. The latter can be obtained
through  the exact algebraic integration of the random effect
out  of the joint posterior density when the random effect is
assumed  to follow a log-gamma distribution. However this is
not possible when a normal (or multivariate normal) distri-
bution  is used for random effects, for example genetic effects
of  related animals. Instead, an approximate integration can be
implemented using a Laplace approximation. Then, assuming
the  hyperparameters known, the estimates of all other param-
eters  are obtained as the mode of their joint posterior density.
This  maximization is done using a limited memory  quasi-
Newton  approach [11] which only requires the computation
of  the vector of first derivatives of the function to maximize.

For  very large applications and models involving correlated
random effects, the quasi-Newton approach may  converge
very  slowly. In this case, a full Newton–Raphson algorithm
(using both the first and the second derivatives of the func-
tion  to maximize) can be used to guarantee convergence in
a  much  smaller number of (computationally more  expensive)
iterations. Also a combination of both quasi-Newton and full
Newton–Raphson algorithms is possible and even advisable
when  good starting values are not available.

Finally, it is also possible to jointly estimate the variance
of  two random effects using a derivative free algorithm. A
normal  distribution can be assumed for each level of both
random  effects. When individuals are (genetically) related, all
relationships  can be accounted for, assuming a multivariate
normal distribution with a (co)variance matrix proportional
to  A, their relationship matrix [12]. These random effects can
be  independent from each other [4], but it is also possible to
account  for their correlated nature as in [5], for example when
they  correspond to time-dependent effects, for example two
genetic  effects influencing differently the trait of interest in
early  and late life. In this case, the two random effects should
have  the same number of levels. The variances of the ran-
dom  effects and their correlation coefficient could be specified
(in  case of availability of good prior estimates) or estimated
simultaneously with the program.

3.  Computer  program

3.1.  General  description

The Survival Kit has been developed since its first release in

1994,  gradually adding possibilities of stratification and differ-
ent  model types, notably the possibility to model correlated
random effects as its latest feature. It is heavily used mostly
in  the animal breeding community, demonstrated by over

dx.doi.org/10.1016/j.cmpb.2013.01.010
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80 scientific papers using the Survival Kit, as of December
012.  This part will describe the program in its current state
for  more  information about changes between versions, see
13–15]).

The  Survival Kit is written in Fortran 90 and can process
ery large amounts of data, for example several millions of
ndividual  records in national breeding value evaluations in
attle [7]. Computational time depends on the actual size of
he  dataset, the model complexity, whether or not (correlated)
andom  effects are used and whether hyperparameters are
ssumed  to be known or need to be estimated. The program
andles  time dependent random effects as well (e.g., two dif-

erent  (possibly correlated) genetic effects affecting the risk of
he  same individual during two different periods). It runs on
very  operating system after compilation. The source code is
reely available on the website mentioned at the end of this
aper.

The  Survival Kit handles any number of fixed (possibly
ime dependent) continuous or discrete covariates with any
umber  of classes. Time dependent covariates are assumed
iecewise constant over time intervals. Therefore, records
ith  time dependent effects should include the time of

hange  and the new value of the covariate, as many  times as
he  covariate changes, for example if the pth variable in the
nput  dataset has a value of v0 at t = 0, any change in value is
ndicated  in the input data file as a triplet (p, tj, vj), meaning
hat  this pth covariate changes to the new value vj at time

j. Any number of triplets can be specified. Consequently,
urvival records are split into so called “elementary records”
nternally, each covering only the time span from a change
n  any covariate to the next. The last column of each record
olds  the number of triplets for the time dependent variables

or  that particular record, with 0 if there were  no changes for
he  time dependent effect, or these are not used at all.

It  is possible to include random effects into the evaluated
odel, which can be interaction terms with other covariates

nd/or  time dependent. The program computes a point esti-
ate  and its standard error for each level of the random

ffect. It can also estimate the variance of the random effect
s  the mode of its posterior density with the possibility to
rovide  also its mean, standard deviation and skewness. The

atter  three parameters give a more  accurate picture about the
pproximate  posterior density of the random effect, which can
e visualized by Gram–Charlier approximation [16] as shown

n  Fig. 5. The knowledge of the mean and standard deviation
f  this posterior density (or of the whole posterior density) can
e  used to decide whether the corresponding random effect is
tatistically different from 0.

There could be any number of random effects in the
valuated model, out of which the variances for at most two
ould  be estimated simultaneously, the others being assumed
o  be known (to estimate the variance of more  than 2 random
ffects,  cyclic maximization can be used). The two estimated
ariances are assumed to be independent by default, but
hey  can also be correlated. The correlation coefficient can
e  assumed to be known (e.g., from a previous analysis) or be

stimated.

Initially,  the Survival Kit had to be first compiled on the
ocal  computer and then used specifying the model param-
ters  in a text file. Recently an interface to R [17] has been
 o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 503–510 505

developed to simplify the usage of the software and provide
visualization options. With the R interface, it is possible to cre-
ate  graphs such as: Kaplan–Meier curve with 95% confidence
intervals, graphical test of the Weibull hazard assumption
(e.g., log(−log(KM estimate)) vs. log(time)), survival function and
cumulative  hazard function for the whole model or each
stratum  in case of stratified models. The distribution of the
random  effect can be plotted using the Gram–Charlier approx-
imation.  All other results appear in a text file.

3.2.  Input  parameters

In this section, some of the input parameters of the R interface
will  be described. Given the wide range of possibilities in the
Survival  Kit, only a few of its most crucial features are going
to  be presented.

The general command is:

SKit4R (program = “”, discrete = FALSE, inputData = “”,
inputPedigree = “”, time = “life”, idRec = “idnum”,
censName = “cens”, censValue = 0, truncate = “”,
effects = c(“”,“”), effectType = c(“”,“”)
pedigreeEffect = “”, timeDepEffects = c(“”,“”),“”, timeDepEf-
fectsType = c(“”,“”)
classEffects = c(“”,“”), outputEffects = c(“”,“”), strata = “”, ori-
gin  = “”, strataSort = 0,
ite quasi = −1, model = c(“”,“”), std error = TRUE,
random = “”, correlation = c(“”,“”,“”),
test = c(“”,“”), baseline = FALSE, kaplan = FALSE,
moments = FALSE, survivalOptions = “”,
residual  = “”, graphics = TRUE)

Out of these function arguments the program, inputData
and  model are compulsory. The arguments time, censName,
censValue and outputEffects can be skipped if the default sett-
ings  are used. The rest of the arguments are describing the
data  structure (e.g., classEffect) or trigger optional features
(e.g.,  test).

-  program: Indicates which compiled executable file should be
used (“cox” or “weibull”). There is the possibility to bypass
the  data preparation step and run only the cox or weibull
programs  by stating “only cox” or “only weibull” in case of
multiple  analyses on the same data set. This is a compulsory
parameter.

-  discrete: The TRUE value indicates that the time scale is
expressed  in a few discrete units, therefore the grouped
data  model of [8] is used. This is available with the weibull
executable file (although it is not a Weibull model!).

- inputData: Name of the input data file. This is a compulsory
parameter.

-  inputPedigree: Name of the pedigree file from which a rela-
tionship  matrix [12] will be constructed.

- time: This could be a single variable name holding the name
of  an already computed survival time, or a set of 3 variables
holding the name of the survival time, the beginning and the
end  of the observation given as dates. In the latter case the

total  survival time is computed within the program.  Only
integer  time variables are allowed.

- idRec: Name of the variable holding the unique identification
number for each record.

dx.doi.org/10.1016/j.cmpb.2013.01.010


 s i n

-  residual: If set to TRUE, it computes the generalized residuals
according to [18] for each initial record (only with the cox
program).
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- censName: Name of the variable holding the censoring codes
for  each record.

-  censValue: A number that identifies the censored obser-
vations in censName, everything else is considered as an
uncensored record The default value denoting the censored
records  is 0 in the R interface, but also can be freely specified
by  the user.

-  truncate: In case there are left truncated records in the data
set,  this variable holds the time of the truncation point,
which could be either an integer number or a date. If the
variable  is coded 0 in the data set, the record is treated as
not  truncated, independently from data type.

- effects: A vector holding the names of all effects as they
appear  in inputData, including the names of time, idRec and
censName  variables.

-  effectType: This parameter specifies the types of input vari-
ables,  as required by the Survival Kit. The statement could be
omitted when only integer values are used the whole input
data  set. Otherwise a character vector is expected. The val-
ues  are “class” for integer, “continuous” for real, “date6” for
date  in 6 digit format (ddmmyy) and “date8” for date in 8 digit
format  (ddmmyyyy).

-  pedigreeEffect: This specifies the name of the variable which
is  linked to the relationship matrix (filename in inputPedi-
gree).

-  timeDepEffects: List of time dependent variables.
- timeDepEffectsType:  The types of time dependent effects

should  be specified in the Survival Kit, similarly to the effects
statement.  This parameter behaves in the same way  as
effectType  above.

-  classEffects: List of variables to be treated as discontinuous
(class) covariates. Everything else stated in effects is treated
as  a continuous covariate.

-  outputEffects: List of effects to be included to the internal
recoded file. In case of large datasets a sizeable amount
of  space and memory  may  be saved if only the variables
needed for further analysis are included here. If the keyword
is  omitted, all effects are included into the output data set
by  default.

-  strata: Variable name holding the (possibly time dependent)
stratification variable in case of stratified Cox, Weibull or
piecewise  Weibull models. Any number of strata levels is
allowed.

-  origin: Specifies the time points when the hazard should be
set  to zero in case of piecewise Weibull models. It is also
possible to use the same variable name here as in strata
which  resets the hazard at the beginning of each stratum (for
example,  the beginning of each parity, in domestic animals).

-  strataSort: In all stratified models the internal recoded files
should  be sorted according to strata. This is largely an auto-
mated  process, but requires the user to specify the column
number  of the stratification variable in the recoded file.

-  ite quasi: Specifies the number of quasi Newton Raphson
iterations (in weibull) before switching to full Newton algo-
rithm.  If the value 0 is specified, the program starts with the
full  Newton algorithm. This parameter is not available with
the  cox program.
-  model: A vector holding the names of covariates from out-
putEffects,  to be included in the evaluated model. This is a
compulsory  parameter.
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 503–510

- std error: If set to TRUE, the asymptotic standard errors of
estimates  are computed for estimates of all effects.

-  random: Specifies the name(s) of the random effect(s). Note
that  these names should also appear in the model part. The
distribution of the random effects can be specified by  the
loggamma, normal or multinormal keywords. The variances of
the random effects might be known or estimated adding
the  estimate keyword. In this case, the mode of the (approxi-
mate)  posterior density of the variance is assumed to be the
best  value for the variance. The mean, standard deviation
and  the skewness of the distribution could be estimated as
well  using the moments keyword of Survival Kit in the random
statement.

-  correlation: Holds the names of two correlated random
effects and the value of the correlation coefficient, or the
command  to estimate its value and a starting value for the
estimate.

-  test: If specified the full model is compared to various
submodels using likelihood ratio tests to find out the sig-
nificance  of each effect.

-  baseline, kaplan: Setting these to TRUE computes the baseline
hazard  function and/or the Kaplan–Meier estimate in the
cox  program and visualizes the outcome via the R graphics
window.

-  moments: If set to TRUE, the moments of the approximate
posterior density of the variance parameter are computed
and  used to plot it using the Gram–Charlier approximation
(the moments should also be specified also in the random
statement).

-  survivalOptions: If specified, information about the survivor
function of individuals with specific covariate values is
produced.  It is a very useful tool to relate the estimated
regression coefficients to a more  conventional scale like
median  survival time or probability of survival to certain
age  (only with the cox program).
Fig. 1 – Kaplan–Meier estimate.

dx.doi.org/10.1016/j.cmpb.2013.01.010
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 graphics: If set to TRUE the graphical capabilities of R are
used  to visualize the results.

.  Applications

.1.  Infant  mortality  in  Austria

ith this example, we  intend to show the use of the Survival
it  with its R interface on data from 2.060.979 records of single-

on  live births between 1984 and 2008 in Austria. All data were
xtracted  from birth certificates provided by Statistics Austria
19].  The variable of interest was  the survival of newborns up
o  1 year of age.

SKit4R(nrecmax = 2100000,
inputData = “main.dat”,
effects = c(“idnum”,“life”,“cens”,

“byear”,“agem”,“pregl”,“gender”,),
effectType = c(“class”,“class”,“class”“class”,

“continuous”,“class”,“class”),
classEffects = c(“byear”,“pregl”,“gender”),
### parameters for the model
program = “cox”,
model = c(“byear”,“pregl”,“gender”),
baseline = TRUE,
kaplan = TRUE)

The input effects were the id number (idnum), length of
ife  (life), censoring code (cens), year of birth (byear), age of the

other  (agem), her pregnancy length in weeks (pregl), and the
ender  of the newborn (gender). From these, the age of the
other  was  expressed with decimal numbers, therefore the

continuous”  specification in the effects line (i.e. real values).
s  it was  considered as a continuous effect, it was  not specified
n  the classEffects function argument.
Almost all input parameters are described in the section

bove. Due to the large amount of data, some pre-defined
rrays in the Fortran code would not be sufficient, so an

ig. 2 – Graphical test of the Weibull hazard assumption (a
traight line is expected if the Weibull model is adequate).
Fig. 4 – Survival function.

additional parameter was used to change the needed size of
computer  memory  accordingly through the nrecmax keyword.

For  simplicity and illustration, only the effects of the birth
year,  pregnancy length and gender were calculated. The out-
put  of the Survival Kit was  automatically saved onto a text file.
The relevant parts of this file are shown below. Also, as the
baseline  and kaplan options were also specified, a set of graphs
was  produced by R (Figs. 1–4). Fig. 2 shows a graphical test,
where  a straight line is expected if the Weibull model is ade-
quate.  The calculation of the Kaplan–Meier estimate required
for  this graph is included in the Cox program.  If the sole pur-
pose  of the run is to compute the Kaplan–Meier estimate, it

is  possible to delete all effects from the model statement to
increase  computational speed, as the values of this estimate
are  not altered by model covariates.

dx.doi.org/10.1016/j.cmpb.2013.01.010
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COVARIATE :                ESTIMATE STANDA

ERR

1   byear (DISCRETE)  

1984                     0.0000      

1985                     0.0075   0.0

1986                    -0.0511   0.0

1987                    -0.1152   0.0

1988                    -0.3508   0.0

1989                    -0.2317   0.0

1990       -0.3045   0.0

1991                    -0.4026   0.0

1992                    -0.4001   0.0

1993                    -0.6009   0.0

1994                    -0.6823   0.0

1995                    -0.8697   0.0

1996                    -0.9415   0.0

1997                    -1.0764   0.0

1998                    -1.0524   0.0

1999                    -1.1355   0.0

2000                    -1.1323   0.0

2001                    -1.1636   0.0

2002                    -1.3600   0.0

2003                    -1.2682   0.0

2004                    -1.2219   0.0

2005                    -1.2911   0.0

2006       -1.4981   0.0

2007                    -1.4862   0.0

2008                    -1.3563   0.0

2   pregl  (CONTINUOUS)

1                 -0.4007     0.15

3   gender   (DISCRETE)  

1                     0.0000      

2                    -0.1727   0.0

According to the results the risk of death until one year of
age  has been steadily decreasing from the 80s. The highly sig-
nificant 16% lower risk of death for female newborns (coded
as  2) is apparent. The reference class in these cases was
automatically set to the class with highest number of uncen-
sored  observations (default), but it could be set to any other

class.  As for the continuous effect, no risk ratio was  calcu-
lated  by the program,  because it depends on the width of
the  interval within the continuous effect. It can be computed
manually: e.g. the risk of death associated with a pregl of
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 503–510

  CHI2    PROB   RISK UNCENSORED

           >CHI2   RATIO FAILURES

     *       *      1.000     902

    0.02  0.8750    1.008     869

    1.11  0.2926    0.950     799

    5.40  0.0201    0.891     741

   44.91  0.0000    0.704     613

   21.07  0.0000    0.793     695

   34.59  0.0000    0.737     636

   60.12  0.0000    0.669     630

   60.88  0.0000    0.670     658

  120.64  0.0000    0.548     531

  148.15  0.0000    0.505     492

  215.07  0.0000    0.419     416

 246.16  0.0000    0.390     402

  287.92  0.0000    0.341     344

  273.55  0.0000    0.349     341

  296.12  0.0000 0.321     309

  310.78  0.0000    0.322     333

  301.00  0.0000    0.312     296

  371.32  0.0000    0.257     259

  336.46  0.0000    0.281     273

  330.47  0.0000    0.295     294

  347.79  0.0000    0.275     272

  416.08  0.0000    0.224     234

  395.67  0.0000    0.226     224

  305.46  0.0000    0.258     204

02 63968.66 0.0000      *   11767

     *       *      1.000    6699

   85.95  0.0000    0.841    5068

36 weeks compared to a pregl of 40 weeks is increased by
exp(−0.40  × (36–40)) = 4.95.

4.2.  Simulation  of  correlated  random  effects

In a second example, we  demonstrate the usage of the Survival

Kit  when the model includes two correlated random effects.
The  objective is to simultaneously estimate their variances
and  their correlation coefficient of two correlated random
effects. For this purpose we used two simulated datasets with

dx.doi.org/10.1016/j.cmpb.2013.01.010
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Table 1 – Mean and standard deviation (s) across replicates of estimated variances and correlation for different designs
and value of true correlation.

�2
1 (true) = 0.3 �2

2 (true) = 0.3 � (true) = −0.2

Without � With � Without � With � With �

50 levels x̄ 0.285  0.285 0.275 0.275 −0.179
s 0.061 0.060 0.060 0.060 0.150

100 levels x̄ 0.279  0.282 0.274 0.277 −0.190
s 0.040 0.041 0.044 0.044 0.107

�2
1 (true) = 0.3 �2

2 (true) = 0.3 � (true) = −0.6

Without � With � Without � With � With �

50 levels x̄ 0.268  0.284 0.257 0.274 −0.592
s 0.058 0.060 0.060 0.062 0.101

100 levels x̄ 0.262  0.282 0.256 0.277 −0.597
s 0.039 0.041 0.042 0.044 0.070

�2
1 (true) = 0.3 �2

2 (true) = 0.3 � (true) = 0.6

Without � With � Without � With � with �

50 levels x̄  0.313 0.285 0.313 0.284 0.622
s 0.065 0.060 0.073 0.068 0.115

100 levels x̄  0.307 0.283 0.307 0.282 0.615
s 0.043 0.041 0.052 0.049 0.082

tes; �

d
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s
a
w
s
o
d
s
r
w
r
E
t
c
T

o
t
a
c
a
i

This can be shown graphically plotting the results from
the  Gram–Charlier approximation. Fig. 5 shows the compar-
ison  of posterior distributions plotted in MS  Excel with 100
x̄,  mean of the 200 replicates; s, standard deviation of the 200 replica

ifferent levels of correlation. A single fixed effect with two
evels  was  assumed, and two random effects with 50 levels in
et1 and 100 levels in set2. One hundred records were associ-
ted  with each level of the first random effect in both cases,
ith  a final size of 5000 records for set1 and 10,000 records for

et2.  The two effects are cross-classified: the first observation
f  level 1 of random effect 1 is associated with level 1 of ran-
om  effect 2, the second observation is associated with the
econd  level of random effect 2, etc. The true values of cor-
elation  coefficients were either −0.2, −0.6 or 0.6. Each model
as  evaluated assuming no correlation or estimating the cor-

elation  coefficient during the run, with a total of 12 models.
ach  model was  run 200 times. The mean and standard devia-
ion  were  computed for the random effects variances and the
orrelation  coefficient were  computed over the 200 replicates.
he  R interface for the computation is:

SKit4R(inputData = “simData.txt”,
effects = c(“idnum”,“life”,“cens”,“fixed”,“rnd1”,“rnd2”),
classEffects = c(“fixed”,“rnd1”,“rnd2”),
program = “cox”,
title = “Correlated random effects”,
model  = c(“fixed”,“rnd1”,“rnd2”),
random = “rnd1 estimate moments normal 0.5

rnd2 estimate moments normal 0.5”,
correlation = c(“rnd1”,“rnd2”,“estimate 0.5”)
moments = TRUE)

The main difference with the previous example is the
ccurrence of the random and correlation statements. This is
o specify the names of the random effects (rnd1 and rnd2)

nd  the fact that we  want to estimate the variances and the
orrelation  coefficient using the estimate keyword. The 0.5 is

 starting value for all computations. The starting value used
s  not so important when estimating the results, but setting
, correlation coefficient between the random effects

it  to a value close to the actual solution (using prior knowl-
edge  or literature results) might decrease computing time. The
results  from all runs are summarized in Table 1. They show
that  correlation was relatively accurately estimated whatever
the  true value between −0.6 and 0.6. Variances were  some-
what  underestimated (respectively overestimated) when the
correlated  nature of the random effects was  ignored and the
true  correlation was negative (respectively, positive). The dif-
ferences are small, but they may  be much  larger when the two
random  effects are not as perfectly cross-classified as in this
simulated  situation.

When  using the moments keyword, the mean, standard
deviation and skewness of the approximate marginal pos-
terior  density of the variance parameters are computed.
Fig. 5 – Gram–Charlier approximations for the simulated
example in Section 4.2 with and without accounting for
correlation  of 0.6 between random effects.
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levels for both random effects with and without accounting
for  correlation of 0.6 between them.

5.  Availability

The Survival Kit can be freely used (including for rou-
tine  genetic evaluations) provided its use is being credited.
Use  it at your own risk. The source code, compiled exe-
cutable files, manual and support programs  can be found at:
http://www.nas.boku.ac.at/nuwi-survivalkit.html.

Acknowledgements

The authors would like to thank to Thomas Waldhör and Har-
ald  Heinzl for their contribution in obtaining and analyzing
the  infant mortality dataset. The financial support by project
number  P20552-B17 of the Austrian Science Fund is acknowl-
edged.  Significant proportion of this work was carried out
during  several research stays of the first author at INRA in
Jouy-en-Josas, France.

 e  f  e  r  e  n  c  e  s

[1] D.R. Cox, Regression models and life-tables, Journal of the
Royal  Statistical Society: Series B 34 (1972) 187–220.

[2] J.D. Kalbfleisch, R.L. Prentice, The Statistical Analysis of
Failure  Time Data, John Wiley and Sons, NY, USA, 1980.

[3]  J. Vaupel, K.G. Manton, E. Stallard, The impact of
heterogeneity in individual frailty and the dynamics of
mortality, Demography 16 (1979) 439–454.

[4] C. Legrand, V. Ducrocq, P. Janssen, R. Sylvester, L. Duchateau,
A  Bayesian approach to jointly estimate centre and
treatment by centre heterogeneity in a proportional hazards
model,  Statistics in Medicine 24 (2005) 3789–3804.
[5] V. Rondeau, J.R. Gonzalez, Frailtypack: a computer program
for  the analysis of correlated failure time data using
penalized likelihood estimation, Computer Methods and
Programs  in Biomedicine 80 (2005) 154–164.
 b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 503–510

[6] V. Ducrocq, G. Casella, A Bayesian analysis of mixed
survival models, Genetics Selection Evolution 28 (1996)
509–529.

[7]  V. Ducrocq, An improved model for the French genetic
evaluation of dairy bulls on length of productive life of their
daughters,  Animal Science 80 (2005) 249–256.

[8] R. Prentice, L. Gloeckler, Regression analysis of grouped
survival data with application to breast cancer data,
Biometrics 34 (1978) 57–67.

[9]  J.D. Kalbfleisch, R.L. Prentice, Marginal likelihoods based on
Cox’s  regression and life model, Biometrika 60 (1973)
267–278.

[10]  V. Ducrocq, Extension of survival analysis to discrete
measures of longevity, in: Fourth International Workshop on
Genetic  Improvement of Functional Traits in Cattle:
Longevity, Jouy-en-Josas, May 9–11, 1999, Interbull Bulletin,
21,  1999, pp. 41–47.

[11]  D.C. Liu, J. Nocedal, On the limited memory BFGS method for
large scale optimization, Mathematical Programming 45
(1989)  503–528.

[12]  R.L. Quaas, Computing the diagonal elements and inverse of
a  large numerator relationship matrix, Biometrics 32 (1976)
949–953.

[13]  V. Ducrocq, J. Sölkner, “The Survival Kit”, a FORTRAN
package for the analysis of survival data, in: Proc. 5th World
Cong.  Genet. Appl. Livest. Prod., 22, 1994, pp. 51–52.

[14] V. Ducrocq, J. Sölkner, The Survival Kit – V3.0, a package for
large  analyses of survival data, in: Proc. 6th World Cong. on
Genet.  Appl. Livest. Prod., January 11–16, University of
New-England, Armidale, Australia, 27, 1998, pp. 447–450.

[15]  V. Ducrocq, J. Sölkner, G. Mészáros, Survival Kit v6 – a
software package for survival analysis, in: 9th World Congr.
Genet.  Appl. Livest. Prod., Leipzig, Germany, 2010.

[16] L. Tierney, J.B. Kadane, Accurate approximations for
posterior moments and marginal densities, Journal of the
American  Statistical Association 81 (1986) 82–86.

[17] R Development Core Team, R: A Language and Environment
for  Statistical Computing, R Foundation for Statistical
Computing, Vienna, Austria, 2009, ISBN: 3-900051-07-0, URL
http://www.R-project.org
[18]  D. Cox, E.J. Snell, A general definition of residuals, Journal of
the  Royal Statistical Society: Series B 30 (1966) 248–275.

[19] Statistics Austria: Vital statistics, http://www.statistik.at/
web en/statistics/population/births/index.html

dx.doi.org/10.1016/j.cmpb.2013.01.010
http://www.nas.boku.ac.at/nuwi-survivalkit.html
http://www.r-project.org/
http://www.statistik.at/web_en/statistics/population/births/index.html
http://www.statistik.at/web_en/statistics/population/births/index.html

	The Survival Kit: Software to analyze survival data including possibly correlated random effects
	1 Introduction
	2 Theoretical background and computational methods
	3 Computer program
	3.1 General description
	3.2 Input parameters

	4 Applications
	4.1 Infant mortality in Austria
	4.2 Simulation of correlated random effects

	5 Availability
	Acknowledgements
	References


