

Estimation of breed composition, breed heterosis and epistatic loss for percent of live spermatozoa in admixed Swiss Fleckvieh bulls

N. Khayatzadeh, G. Mészáros, Y.T. Utsunomiya, F. Schmitz-Hsu, B. Gredler, U. Schnyder, M. Ferenčaković, I. Curik, J. Sölkner

2017

N. Khayatzadeh, BOKU, Vienna

Introduction

Crossbreeding

- Most common mating in livestock and plant breeding where sire and dams originate from different parental lines
- Optimizes genetic merit of crossbred offspring
 - ✓ Introducing favorable genes
 - ✓ Decreasing inbreeding depression
 - ✓ Benefit from gene interaction of heterosis

Heterosis

- Superiority of a crossbred progeny compared with its mid-parents average for a particular trait due to any non-allelic gene interaction
- Heterosis extent
 - ✓ Difference in frequency of the genetic variants contributed in heterosis
 - ✓ Number of involved parental breeds
 - ✓ Type of crossbreeding (two-way, three-way, backcrossing)

Figure 1 Ancestry pattern along the genome of admixed individuals

Schreiber & Akey, Nature Review Genetics (2015)

Type of cross	Heterosis
	%
F1 (S \times T)	100
F2 $(S \times T) \times (S \times T)$	50
Back cross $S \times (S \times T)$ or $T \times (S \times T)$	50
Second generation of a rotational cross S × (T × (S × T))	75
Third generation of a rotational cross T × (S × (T × (S × T)))	62.5
Rotational cross after many generation	66.6
Second generation of a synthetic line (= F2) $(S \times T) \times (S \times T)$	50
Third generation of a synthetic line (= F3) $(S \times T) \times (S \times T) \times$	50
$(S \times T)$	50
Synthetic two-breed line after many generations	66.6
Synthetic three-breed line after many generations	

Table 1 Heterosis as apercentage of full heterosis for different types of crosses

Recombination loss

- Unfavorable gene effects in crossbred offsprings due to breakdown of preantal epistatic gene complex
- Measure of deviation from linear association of heterosis
- Average fraction of indepenenlty segrgating gametes which are expected to be non-parental (Disckerson , 1965)
- Kinghorn (1982) defined the epistatic loss term (e_x)as the probability two random chosen non-allelic genes (derived from either one or both parents) originate from different breeds

Aim of study

Estimation of average breed effect , heterosis and epistatic loss on percentage of live sperm in Swiss Fleckvieh admixed bulls, using genomic information

Materials and methods

Red Holstein Frisian

Swiss Simmental

- High milk production
- Functional and fitness

Swiss Fleckvieh

Phenotypic records

Table 2 overall phenotypic data information

Breed	Holstein Frisian, Simmental, admixed Swiss Fleckvieh
Trait	Live sperm (%)
No. of records	68,475
No. of bulls	1298
Al Station	Mülligen, Switzerland,
Dates	2000-2015

- ✓ Remove bulls with less than 10 records
- ✓ Remove ejaculates with < 3 days interval</p>
- ✓ Discard ejaculates beyont the range of \pm 3 standar deviation

43,782 recordsfor 1296 bulls

Genotypic records

 Genotypes from Swissherdbook cooperative Zollikofen from different Illumina[®] chip (50K,150K and HD)

- Imputed genotypes with 44,999 subset, using *F-impute* software (Sargolzaei, 2014) Standard quality control hasd been pweformed
- After applying standard quality control **38,299 SNP for 147**

HF, 207 SI and 815 SWF (1169 bulls) (PLINK2)

Statistical analysis (Ime4, CRAN package)

```
\begin{aligned} y_{ijklmn} &= \mu + \alpha_i + age_j + cont_k + elps_l + assist_m + bp_{ijklmn} + \varepsilon_{ijklmn} \\ y_{ijklmn} &= \mu + \alpha_i + age_j + cont_k + elps_l + assist_m + bp_{ijklmn} + bhet_{ijklmn} + \varepsilon_{ijklmn} \\ y_{ijklmn} &= \mu + \alpha_i + age_j + cont_k + elps_l + assist_m + bp_{ijklmn} + epstloss_{ijklmn} + \varepsilon_{ijklmn} \\ y_{ijklmn} &= \mu + \alpha_i + age_j + cont_k + elps_l + assist_m + bp_{ijklmn} + bhet_{ijklmn} + epstloss_{ijklmn} + \varepsilon_{ijklmn} \end{aligned}
```

- *Y*_{*ijklmn*} observation for each bull
- μ overall mean
- α_i random permanent effect of each bull
- age_j , $cont_k$, $elps_l$ and $assist_m$ fixed effects of age, contemporary group, ejaculate interval and sperm collector respectively
- **bp**_{ijklmn} regression coefficient for breed percent (HF proportion) averaged across incorporated SNP
- **bhet**_{ijklmn} regression coefficient for breed heterosis averaged across SNP
- *epstloss_{ijklmn}* regression coefficient for epistatic loss (Kinghorn, 1982)
- ε_{ijklmn} random error associated with each observation (SAS, proc mixed)

Regression coefficinets

- Breed percent the average of HF proportion for all incorporated SNP extracted from LAMP (Sankararaman *et al*. 2008)
- Breed heterosis
 - \checkmark 0 if both allele originated from the same origin
 - ✓ 1 if alleles had different ancestry origin
 - ✓ taking the average of breed heterosis for all incorporated SNP

• Epistatic loss

- ✓ Sampling randomly 100,000 two SNP across the whole genome
- ✓ randomly chosen one allele from each SNP
- ✓ 0 if both non parental alleles had different ancestry origin
- ✓ 1 if they had same origin

Results

Population structure

Figure 2 PCA results for HF and SI pure ancestral population and admixed bulls

13

Eigenvector 1

Comapring models

 Fixed effects showed significant differences between models, except sperm collector

Table 3 Model Adequacy comparing between models

Models	1 (bp)	2(bp+bhet)	3(bp+epst)	4(bp+bhet+epst)
1 (bp)		33	30	31
2(bp+bhet)			3	2
3(bp+epst)				1

- Bp, bhet and epst denote for breed percent, breed heterosis and epistatic loss
- AIC is the Akaike information criteria and Δ AIC is the difference
- ΔAIC < 2 no significant difference between models
 3 < ΔAIC < 7 considerably less support
 ΔAIC > 7 no likely

Comparing the model based \triangle AIC (Akaike information criteria)

- **model 1 with 2,3 and 4** model 1 is not likely, breed heterosis has significant effect in the model
- model2 and 3 model 3 with less support
- model 2 and 4 no significant difference
- model 3 and 4 no significant difference

- The classical model with breed percent and breed heterosis was most probable model
- Considering epistatic loss did not have significant influence.

Table 4 Regression coefficients (±standard error) for percent of live spermatozoawith different models

Models	Breed percent	Breed heterosis	Epistatic loss
1	0.65 (0.19)***		
2	0.41(0.19)***	2.00(0.34)***	
3	0.37 (0.20)***		2.03(0.41)***
4	0.43(0.20)***	2.5(1.39)***	-0.65(1.68)n.s

Epistatic loss (Kinghorn, 1982)

**** p < 0.0001, *** p < 0.001, ** p < 0.001, * p < 0.01, * p < 0.05, n.s p > 0.1

Discussion

- The classical model with breed percent and breed heterosis was most probable and considering epistatic loss did not have significant influence in the model
- Separation of the effects is not completely possible due to high correlation between breed heterosis and epistatic loss
- Confounding the effect of breed heterosis and epistatic loss was also reported by Fries *et al.* (2002)

17

Conclusions

- Crossbred populations provide unique opportunity to study non-additive genetic effects of heterosis and epistatic loss
- Usually higher heterosis is expected for traits with low heritability such as reproduction traits
- Heterosis effect on percentage of live sperm in admixed Swiss Fleckvieh bulls was expected to be 2.00 (±0.34) % more in compare with the mean of purebred HF and SI
- Including epistatic loss showed 0.65 % decrease in percentage of live sperm
- Due to high correlation between these two effects, the estimates of heterosis and epistatic loss were confounded

