#### **25th International Symposium Animal Science Days**



## **Effective population size and genomic inbreeding in Slovak Pinzgau cattle**



#### NINA MORAVČÍKOVÁ, RADOVAN KASARDA, VERONIKA KUKUČKOVÁ, ONDREJ KADLEČÍK

DEPARTMENT OF ANIMAL GENETICS AND BREEDING BIOLOGY, SLOVAK UNIVERSITY OF AGRICULTURE IN NITRA, TR. A. HLINKU 2, 949 76 NITRA, SLOVAK REPUBLIC

September 20-22, 2017; Brandlucken, Austria



## Introduction

Why Pinzgau cattle?

♦ Breeding strategy → to minimize level of inbreeding
→ to increase effective population size

- $\bullet N_e$  and F  $\rightarrow$  prediction of genetic variation loss
  - $\rightarrow$  rate of increase in inbreeding
  - $\rightarrow$  population history





In Slovak Pinzgau population to estimate based on high-density data :

- effective population size,
- genomic inbreeding.



# **Material & Methods**

### Analysed individuals

### Genotyping data

Illumina BovineSNP50 BeadChip V2

#### **Quality control**

- only autosomal SNPs with known chromosomal position
- ♦SNPs with call rate ↑ than 90%
- ♦MAF frequency ↑ than 0.05
- ♦ HWE limit of 1x10<sup>-5</sup>



# **Material & Methods**

### Inbreeding coefficient ( $F_{ROH}$ )

expressed as the length of the genome present in ROH divided by specified length of the autosomal genome covered by SNPs

### ♦3 length categories (F<sub>ROH>4 Mb</sub>, F<sub>ROH>8Mb</sub>, F<sub>ROH>16 Mb</sub>)

### Criteria for the ROH segments:

- the minimum number of SNPs in ROH: 15
- the minimum length of ROH: 1 Mb
- minimum density of one SNPs on every 100 kb
- maximum gap between consecutive SNPs of 1 Mb
- one heterozygous call allowed for length >16 Mb, one missing call allowed for length >4 Mb, >8 Mb and 4 for >16 Mb



## **Material & Methods**

### Ancestral and recent effective population size $(N_e)$

\*according to Corbin et al. (2012)

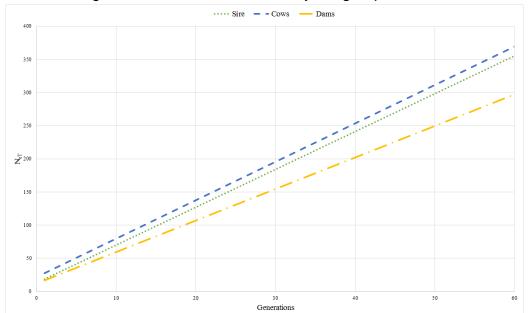
♦ historical effective population size → expressed as a function of time and physical genetic distance between two loci

**♦ current**  $N_e$  → predicted based on the linear regression performed on estimates obtained for the past generations (N<sub>eLD10</sub> to N<sub>eLD60</sub>)

## **Results & Discussion**

ROH greater than 4 MB  $\rightarrow$  2.22%

ROH greater than 16 MB  $\rightarrow$  0.81%


recent inbreeding in analysed population

| Inbreeding<br>coefficient | Mean  | Standard<br>deviation | Lower 95%<br>CI | Upper 95%<br>CI | Range         |
|---------------------------|-------|-----------------------|-----------------|-----------------|---------------|
| Cows                      |       |                       |                 |                 |               |
| $F_{ROH} > 4 \text{ Mb}$  | 0.024 | 0.022                 | 0.019           | 0.029           | 0.000 - 0.133 |
| $F_{ROH} > 8 \text{ Mb}$  | 0.016 | 0.020                 | 0.012           | 0.020           | 0.000 - 0.131 |
| $F_{ROH}$ > 16 Mb         | 0.008 | 0.016                 | 0.005           | 0.012           | 0.000 - 0.105 |
| Dams                      |       |                       |                 |                 |               |
| $F_{ROH} > 4 \text{ Mb}$  | 0.017 | 0.016                 | 0.012           | 0.023           | 0.000 - 0.072 |
| $F_{ROH} > 8 \text{ Mb}$  | 0.011 | 0.013                 | 0.006           | 0.015           | 0.000 - 0.062 |
| $F_{ROH} > 16 \text{ Mb}$ | 0.007 | 0.012                 | 0.003           | 0.012           | 0.000 - 0.048 |
| Sires                     |       |                       |                 |                 |               |
| $F_{ROH} > 4 \text{ Mb}$  | 0.023 | 0.019                 | 0.017           | 0.030           | 0.000 - 0.072 |
| $F_{ROH} > 8 \text{ Mb}$  | 0.016 | 0.015                 | 0.011           | 0.021           | 0.000 - 0.048 |
| $F_{ROH} > 16 \text{ Mb}$ | 0.009 | 0.011                 | 0.005           | 0.012           | 0.000 - 0.033 |

Summary statistics of  $F_{ROH}$  within each of analysed group

## **Results & Discussion**

Historical  $N_e(N_{eT}) \rightarrow$  linear decrease within each of group Predicted current  $N_e$  across animals  $\rightarrow$  30.29 (90% CI 28.95-33.46)



The N<sub>e</sub> trends across generation within each of analysed group based on the linear regression

September 20-22, 2017; Brandlucken, Austria





The estimates of historical effective population size indicated the linear decrease within each of analysed group.

The predicted current  $N_e$  across all of animals clearly demonstrated the endangered status of Slovak Pinzgau population that was previously described based on both pedigree and genomic information.



## Conclusions

The results of this study mainly reflected the need for constant monitoring to increase population size without reduction of genetic diversity due to inbreeding.

The study will contribute to the conservation management strategy of Pinzgau cattle in Slovakia.

## **Thank you for your attention!**

### Acknowledgement

This study was supported by the Slovak Research and Development Agency (Contract No. APVV-14-0054 and APVV-0636-11).