

Department für Nachhaltige Agrarsysteme

Institut für Nutztierwissenschaften

Effect of lactic acid treated by-product concentrate, in a diet w/out inorganic P supplementation on ruminal fermentation and nutrient degradation in vitro

Andreas Haselmann

Betreuer: Univ.Prof. Q. Zebeli Ao.Prof. W. Knaus Dr.Sc. F. Klevenhusen

Introduction

- linear degradation of phytic acid with increased concentration of lactic acid (Metzler-Zebeli et al. 2014)
- Harder et al. 2015 (RUSITEC trial):
 - enhanced SCFA (short chain fatty acids) production from lactic acid (LAc) treated barley when no inorganic P was supplemented
 - decrease of NH₃ conc. in rumen fluid through lactic acid treatment regardless of P level

 What are the effects of lactic acid treatment of a by-product mixture and the supplementation of inorganic P on ruminal fermentation and nutrient degradation in vitro (RUSITEC)?

RUSITEC (I) - How does it work? <u>Rumen Simulation Technique</u>

Experimental design (I)

24 h soaking process

96 h drying at 40°C

Experimental design (II)

Diet formulation (10 g/bag) – dry matter basis

P- (inorganic P-free)			P+ (inorganic P supplemented)				
LAC-	LAC- LAC+		LAC-	LAC+			
5.0 g Forages	5.0 g Forages		5.0 g Forages	5.0 g Forages			
4.8 g by- product mixture	4.8 g by- product mixture		4.8 g by- product mixture	4.8 g by- product mixture			
0.2 g Minerals, P-free 0.2 g Minerals P-free			0.2 g Minerals, with P	0.2 g Minerals, with P			

Diet – Nutrient content

	P -			P +			
Item (g/kg DM)	LAC -	LAC +		LAC -	LAC +		
OM	899	904		899	904		
CP	171	153		171	153		
aNDFom	538	510		538	510		
ADFom	268	255		268	255		
NFC ¹	160	211		160	211		
total P	5.2	4.8		7.1	6.7		
¹ NFC = 1000- CA – CP – EE – aNDFom							

+ 1.9 g/kg DM inorganic P supplementation

RUSITEC - setup

	Unit I								Uni	t II			
Vessel	1	2	3	4	5	6	-	7	8	9	10	11	12
	P-	P-	P-	P-	P-	P-		P+	P+	P+	P+	P+	P+
Run 1	LAC	LAC	LAC	LAC	LAC	LAC		LAC	LAC	LAC	LAC	LAC	LAC
	+	-	+	-	+	-		-	+	-	+	-	+
	P+	P+	P+	P+	P+	P+		P-	P-	P-	P-	P-	P-
Run 2	LAC	LAC	LAC	LAC	LAC	LAC		LAC	LAC	LAC	LAC	LAC	LAC
	-	+	-	+	-	+		+	-	+	-	+	-

Statistical Analysis – SAS 9.4

Proc. mixed (REML)

- Statistical model:
 - $Y = T_1 + T_2 + T_1 * T_2 + Run + Fermenter + \varepsilon$

 $T_1 \dots \text{LAC-/LAC+}$ $T_2 \dots \text{P-/P+}$

Results

Nutrient degradation

SCFA concentration in rumen fluid

	F	D	P	'+	P- Value			
ltem	LAC -	LAC +	LAC -	LAC +	LAC	Р	LACxP	
SCFA (mmol/l)	99.7	110.7	94.7	103.7	<0.05	<0.05	0.43	

- Total SCFA concentration was highest in LAC+ diets when no inorganic P was added
- LAC supplies energy for microbiota

Nutrient degradation

- CHO degradation was only affected by P addition
 - degradation of fiber was higher in P- diets
 - degradation of non fiber carbohytrates was higher in P+ diets
- CP degradation was affected by P and LAc addition
 - NH₃ conc. corresponded with magnitude of CP degradation

- Lower SCFA concentration was lower compared to previous studies although application rate of LAC was higher
- LAC+ caused dilution of nutrients
- inorganic P enhanced NFC degradation at the expense of other nutrients
- LAC might degraded phytate (Metzler-Zebeli et al. 2014) and might enhanced utilisation of dietary P sources

Conclusions

P supplementation

- organic P, released by LAC+, might be a better source of P for ruminal microbiota than inorganic P
- Lactic acid treatment
 - substantially contributed to the supply of available energy