25th International Symposium Animal Science Days

EFFECTS OF KETOSIS STATUS DEFINED BY FTIR SPECTROSCOPY ON MILK QUALITY TRAITS OF FIRST-LACTATION COWS

A. Benedet*, M. Penasa, M. Cassandro, M. De Marchi

*anna.benedet@phd.unipd.it University of Padova

Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE)

Università degli Studi di Padova

Heilbrunn, Brandlucken (Austria) September 20-22, 2017

What is ketosis?

- A frequent metabolic disorder in dairy cattle;
- Occurring when cows are unable to manage the high energy request for milk production in early lactation;
- Abnormal concentration of circulating ketone bodies (hyperketonemia);

Herdt, 2000; Duffield et al., 2009; Berge and Vertenten, 2014

Negative effects on:

- Milk yield Dohoo and Martin, 1984; Duffield et al., 2009
- Milk chemical composition Kayano and Kataoka, 2015; Santschi et al., 2016
- Reproduction performance Raboisson et al., 2014

What is ketosis?

- A frequent metabolic disorder in dairy cattle;
- Occurring when cows are unable to manage the high energy request for milk production in early lactation;
- Abnormal concentration of circulating ketone bodies (hyperketonemia);

Herdt, 2000; Duffield et al., 2009; Berge and Vertenten, 2014

Negative effects on:

- Milk yield
- Milk chemical composition
- Reproduction performance

Relevant economic loss for farmers

265€ per case

McArt et al., 2015

Ketosis can be ...

Ketosis can be ...

Ketosis diagnosis

Through the measurement of β -hydroxybutyrate (BHB) concentration in body fluids of dairy cows

- More practical tool
- KET \geq 0.15 0.20 mmol/L

BHB in milk can be routinely predicted by FTIR spectroscopy for screening hyperketonemia

Oetzel, 2004; van Knegsel et al., 2010; Denis-Robichaud et al., 2014

Introduction

Aim

To investigate the effect of ketosis status on milk yield and quality traits of Holstein Friesian cows

Koeck et al., 2014; Santschi et al., 2016

Aim

Statistical analysis

25th International Symposium - Animal Science Days. 20 – 22 September, 2017. Austria.

 $*SCS = 3 + \log_2(SCC/100,000)$

Results

Mean and standard deviation (SD), F-value and significance of fixed effects in the analysis of milk yield and quality traits.

Troit			Effect	
ITall	Mean \pm SD	DIM	Ketosis status	DIM*Ketosis status
Milk (kg/d)	30.08 ± 7.06	86.18***	36.13***	2.95***
Fat (%)	3.87 ± 0.85	94.61***	193.29***	3.48***
Protein (%)	3.13 ± 0.34	497.03***	10.36***	3.55***
Casein (%)	2.43 ± 0.26	348.31***	26.83***	3.11***
Lactose (%)	4.93 ± 0.21	233.48***	89.77***	1.91*
SCS	2.57 ± 1.76	23.68***	8.03***	0.67

Statistical significance is given as: ****P* <0.001, ***P* <0.01, **P* <0.05.

Results

Mean and standard deviation (SD), F-value and significance of fixed effects in the analysis of milk yield and quality traits.

Trait		Effect			
ITall	Mean \pm SD	DIM	Ketosis status	DIM*Ketosis status	
Milk (kg/d)	30.08 ± 7.06	86.18***	36.13***	2.95***	
Fat (%)	3.87 ± 0.85	94.61***	193.29***	3.48***	
Protein (%)	3.13 ± 0.34	497.03***	10.36***	3.55***	
Casein (%)	2.43 ± 0.26	348.31***	26.83***	3.11***	
Lactose (%)	4.93 ± 0.21	233.48***	89.77***	1.91*	
SCS	2.57 ± 1.76	23.68***	8.03***	0.67	

Statistical significance is given as: ****P* <0.001, ***P* <0.01, **P* <0.05.

Results

Mean and standard deviation (SD), F-value and significance of fixed effects in the analysis of milk yield and quality traits.

Troit		Effect			
ITall	Mean \pm SD	DIM	Ketosis status	DIM*Ketosis status	
Milk (kg/d)	30.08 ± 7.06	86.18***	36.13***	2.95***	
Fat (%)	3.87 ± 0.85	94.61***	193.29***	3.48***	
Protein (%)	3.13 ± 0.34	497.03***	10.36***	3.55***	
Casein (%)	2.43 ± 0.26	348.31***	26.83***	3.11***	
Lactose (%)	4.93 ± 0.21	233.48***	89.77***	1.91*	
SCS	2.57 ± 1.76	23.68***	8.03***	0.67	

Statistical significance is given as: ****P* <0.001, ***P* <0.01, **P* <0.05.

Results

Least squares means of milk yield and quality traits for ketosis status according to milk BHB concentration.

Troit	NORMAL	SUSPECT	KETOTIC
Irall	(BHB <0.15 mmol/L)	(BHB 0.15-0.19 mmol/L)	(BHB $\geq 0.20 \text{ mmol/L}$)
Milk (kg/d)	29.94 ^a	29.26 ^b	26.81 ^c
Fat (%)	3.79 ^c	4.12 ^b	4.69 ^a
Protein (%)	3.12 ^a	3.08 ^b	3.06 ^b
Casein (%)	2.42 ^a	2.38 ^b	2.34 ^c
Lactose (%)	4.95 ^a	4.90 ^b	4.80 ^c
SCS	2.55 ^a	2.65 ^a	2.99 ^b

^{a-c} Least squares means with different letters across milk BHB concentrations are significantly different according to Bonferroni's test (P < 0.05).

Intr	oduction	Aim	Mat & Met	Results	

Least squares means of milk yield and quality traits for ketosis status according to milk BHB concentration and across days in milk (DIM).

Trait		NORMAL	SUSPECT	KETOTIC	
	ITall	(BHB <0.15 mmol/L)	(BHB 0.15-0.19 mmol/L)	$(BHB \ge 0.20 \text{ mmol/L})$	
	Milk (kg/d)	29.94 ^a	29.26 ^b	26.81°	

		Introduction	Aim	Mat & Met	Results
--	--	--------------	-----	-----------	---------

Least squares means of milk yield and quality traits for ketosis status according to milk BHB concentration and across days in milk (DIM).

Troit	NORMAL	SUSPECT	KETOTIC
ITall	(BHB <0.15 mmol/L)	(BHB 0.15-0.19 mmol/L)	$(BHB \ge 0.20 \text{ mmol/L})$
Milk (kg/d)	29.94 ^a	29.26 ^b	26.81 ^c
Fat (%)	3.79 ^c	4.12 ^b	4.69 ^a

Least squares means of milk yield and quality traits for ketosis status according to milk BHB concentration.

Troit	NORMAL	SUSPECT	KETOTIC
ITall	(BHB <0.15 mmol/L)	(BHB 0.15-0.19 mmol/L)	$(BHB \ge 0.20 \text{ mmol/L})$
Milk (kg/d)	29.94 ^a	29.26 ^b	26.81 ^c
Fat (%)	3.79 ^c	4.12 ^b	4.69 ^a
Protein (%)	3.12 ^a	3.08 ^b	3.06 ^b
Casein (%)	2.42^{a}	2.38 ^b	2.34 ^c
Lactose (%)	4.95^{a}	4.90 ^b	4.80 ^c
SCS	2.55^{a}	2.65 ^a	2.99 ^b

^{a-c} Least squares means with different letters across milk BHB concentrations are significantly different according to Bonferroni's test (P < 0.05).

Conclusions

- I. Ketosis negatively affects milk yield and quality traits in early lactation;
- II. Cows exhibited significantly different performance across ketosis status classes;
- III. KETOTIC cows yielded less milk with greater fat and SCS contents than NORMAL cows (SUSPECT cows were intermediate);
- IV. Same trends of difference between classes were generally observed across 60 DIM;

25th International Symposium Animal Science Days

THANK YOU!

anna.benedet@phd.unipd.it University of Padova

Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE)