Can crops adapt to the threat of desertification

Gernot BODNER

Department of Crop Sciences Working Group Crop Ecology University of Natural Resources and Life Sciences BOKU Vienna

Stress	Significance	
Heat	12 % of global agricultural area ¹ (Continental areas of Asia and North America)	
Cold/frost	13 % of global agricultural area ²	
Others (Ozone,)	No global area estimates	

27 % of global agricultural area ²		
30 % of global agricultural area ³		
Low organic matter soils		
25 % of global agricultural area ⁴		
25% (AT, Alpenvorland ⁶) - 30 % (DT, Meklenburg- Vorpommern ⁷) of agricultural area		
7 % of land area, 50 % of irrigated area ⁵		

Real₂₀₀₀ / potential yield = 40 $\%^{1}$

Sources: Teixeira et al. (2013) Agric. Forest Meteorol. 170 und eigene Berechnung; ²FAO/IIASA (2000); ³MacDonald et al. (2011) PNAS 108; ⁵Lynch et al. (2004) Field Crops Res. 90; ⁶Murer et al. (2012) Die Bodenkultur; ⁷Frielinghaus et al. (s.a.) Beiträge Bodenschutz

Two main reasons for limited ecosystem productivity

- Restricted time of the year adapted for plant growth.
- Low leaf area for absorption of incoming radiation ("small plants")

Desertification

Shortening of development stages.

- Increased water losses.
- Increased assimilate costs for "defense".
- Physiological damage (Dehydration, cavitation, ROS, protein degradation).

Plants in stress environments are programmed to survive not to produce.

Stress response cascade: Example water stress

?

What mechanisms can be used to make crops resist desertification while ensuring farmer's survival ?

Levitt's framework for stress resistance breeding

"Any trait can confer resistance, just design the right scenario ..." (Tardieu 2011)

	Supply driven	Storage driven	Residual moisture
Drought escape	+	+++	++
Water saving	-	+	+++
Water spending	+++	++	+

Efficiency of plant strategies in different drought environments

Key traits

Drought escape: Early flowering/maturity

Water saving: Stomata closure, leaf area reduction, leaf surface, tiller reduction, (reduced root conductance)

Water spending: Deep rooting, fine root density, root hairs

The drought environment under desertification

Desertification will reduce soil storage capacity in environments with low rainfall input!

- Plant strategies based on optimizing uptake (e.g. deep rooting) will loose ground.
- Restoring soil storage is a precondition for many plant resistance mechanisms to be effective.
- Conservative and balanced use of limited resources will come into the focus.

Where will desertification bring us?

Shift in crops.... 1 Maize Assimilation type Stress Sorghum Rooting ty ++

Millet

Saving type

+

Yield

... adaptation in management

University of Natural Resources and Life Sciences BOKU Vienna Department of Crop Sciences Division of Agronomy – Working Group Crop Ecology

Priv.-Doz. DI Dr. Gernot Bodner

Konrad Lorenzstraße 24, A-3430 Tulln an der Donau Tel.: +43 1 47654-3331, Fax: +43 1 47654-3342 gernot.bodner@boku.ac.at , www.boku.ac.at

