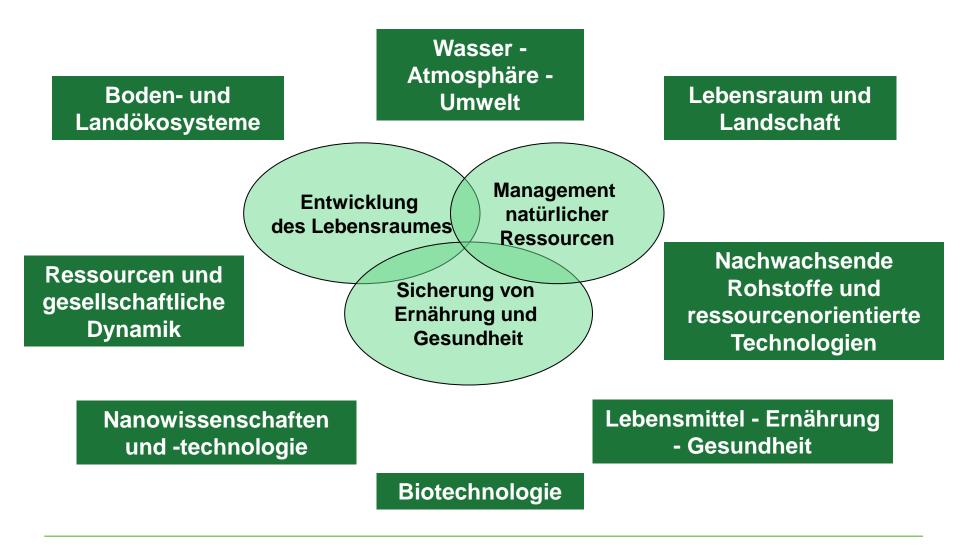
Science meets Business

Die BOKU und ihre Rolle im Innovationsprozess

Rektor Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. mult. Martin H. Gerzabek

26. Februar 2013, Raiffeisen Forum

BOKU - Fakten und Zahlen



- Gegründet 1872
- 11.350 StudentInnen in 9 Bachelor, 25 Master (inkl. sieben double degree Programme; 10 Masterprograme in Englisch) und mehrere Doktoratsprogramme (~ 800 Studierende); > 1.550 AbsolventInnen pro Jahr; Studierendenzufriedenheit: 2. Platz in Österreich; 18% ausländische Studierende, Green University Ranking: 8. Platz in Europa, 21. weltweit
- ~ 1600 Angestellte (VZÄ), 2.200 Köpfe; ~700 WissenschafterInnen beschäftigt auf Projektbasis; ~ 70 ProfessorInnen (~50% ausländischer Herkunft), ~ 130 Assoc. Profs
- 700 laufende Projekte, ~ 100 EU Projekte, ~ 110 FWF Projekte, Teilnahme an zahlreichen Exzellenzprogrammen (FWF, ERC, COMET, 8 Christian Doppler Labs, Laura Bassi Lab, WWTF,...)
- ~ 105 Mio € Basisfinanzierung, 37 Mio € externe Ressourcen (Projekte)
- 2.500 wissenschaftliche Publikationen pro Jahr (~ 570 SCI), ~ 1.350
 Präsentationen pro Jahr
- Organisiert in 15 Departments

Themen und Kompetenzen der BOKU

Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

3-Säulenprinzip: Naturwissenschaften – Technik – Sozioökonomie

Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

BOKU Standort Muthgasse

Science meets Business

Die BOKU und ihre Rolle im Innovationsprozess

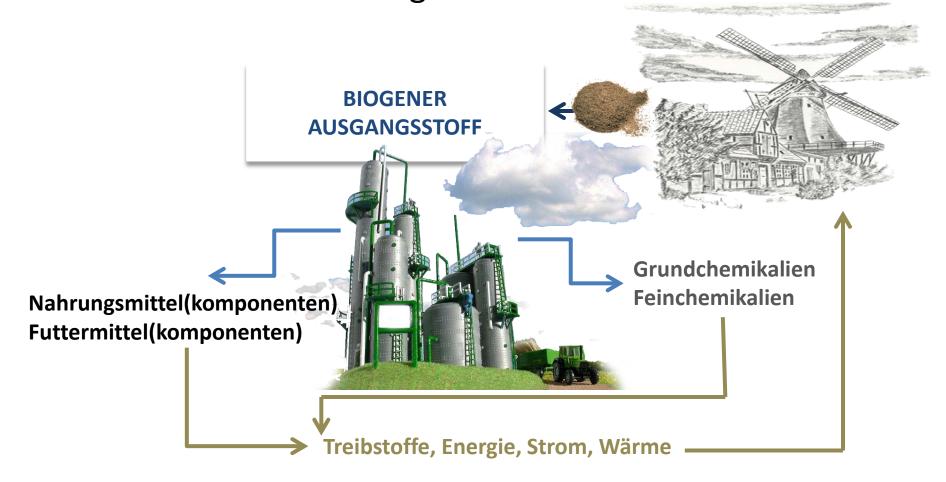
Ausgewählte Beispiele

Universität für Bodenkultur Wien Department für Lebensmittelwissenschaften und Lebensmitteltechnologie

"CEREVAL" Christian-Doppler-Labor für Innovative Kleiebioraffinerie

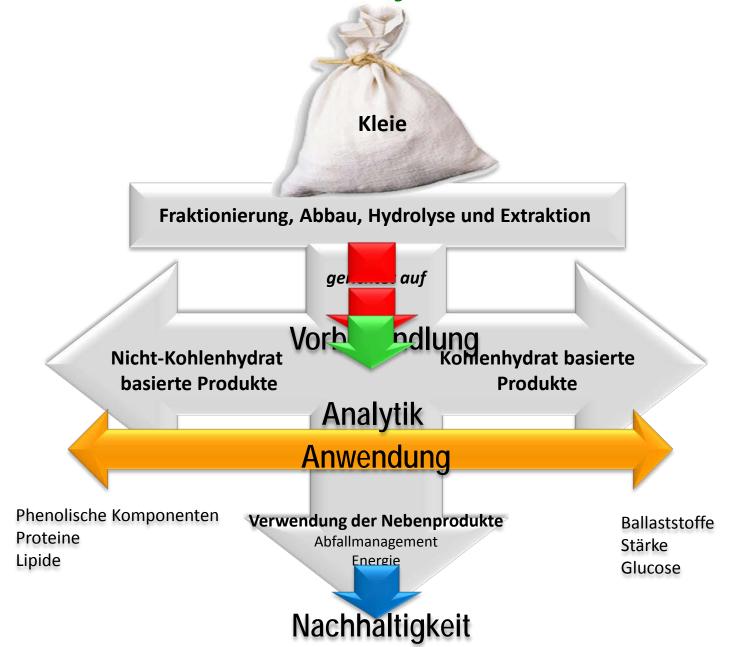
Projektleiter: Wolfgang Kneifel

Laufzeit: 7 Jahre mit Zwischenbegutachtung



Das "CEREVAL" Bioraffineriekonzept

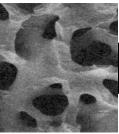
... zielt auf die umfassende stoffliche und energetische Verwertung von Biomasse ab

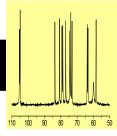


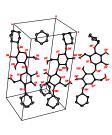
Veredelungszweig A

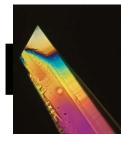
"CEREVAL" - Projektübersicht

Veredelungszweig B


and Life Sciences, Vienna


BOKU Standort Tulin



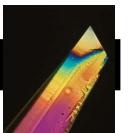


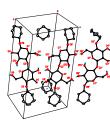
Chemie nachwachsender Rohstoffe (Holz, Zellstoff und Faserchemie)

Universität für Bodenkultur Wien Department für Chemie

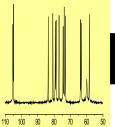
W

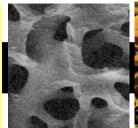
Arbeitsgruppe "Holz-, Zellstoff- und Faserchemie"


Member of the EPNOE -European Polysaccharide Network of Excellence

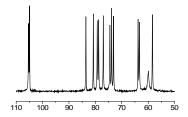


Member of the Global Center of Excellence (CoE) in Fiber Engineering
Headed by Shinshu University at Ueda, Japan

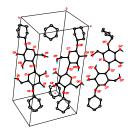




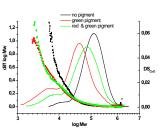
Christian Doppler Labor


"Advanced Cellulose Chemistry and Analytics"


2008 – 2015; Projektleiter: T. Rosenau; A. Potthast; 7 Jahre, 0.6 Mio € p.a.



Hauptthemen des CD-Labors


Charakterisierung der Cellulosen

Celluloseabbau und –alterung

Oberflächenchemie

COMET K-Projekt Lignin- und Zellstoffforschung der Zukunft

BOKU WPF

Future Lignin and Pulp Processing Research (FLIPPR)

Mit den 4 größten Zellstoff- und Papierproduzenten Österreichs

2013 – 2017; Projektleiter: T. Rosenau, A. Potthast, G. Gübitz; 1.5 Mio €

p.a

mondi

sappi

Inspired by life

Lignin-Plattform

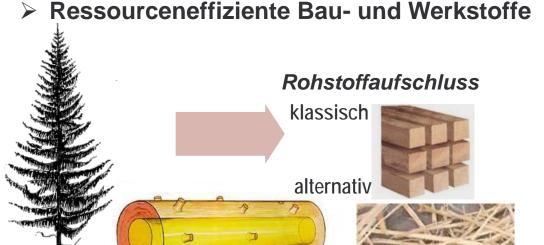
Lignin als mengenmäßig zweitwichtigste Produkt der Zellstofferzeugung

- ➤ Heute v. a. energetisch genutzt → geht nachhaltiger Nutzung verloren
- Molekulare Charakterisierung der verschiedenen Lignintypen
- Untersuchung von technischen Einsatzmöglichkeiten, wie zB Lignin in Bindemitteln, Klebstoffen, Bodenverbesserung, etc.

Faser-Plattform

Cellulose als Hauptprodukt der Zellstofferzeugung

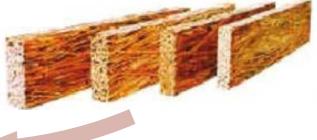
- Steigende Anforderungen im Papier-Bereich als auch im Nicht-Papier-Produktbereich
 - flexible und physikalisch, chemisch oder enzymatisch modifizierte Fasern erforderlich


Innovative Werkstofftechnologien in der Verarbeitungskette Holz

Physikalischer Rohstoffaufschluss für innovative Hochleistungswerkstoffe

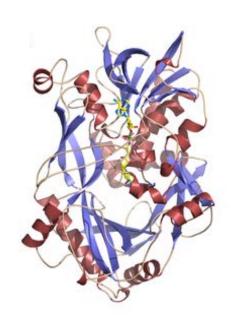
Universität für Bodenkultur Wien
Department für Materialwissenschaften
und Prozesstechnik

Recycling

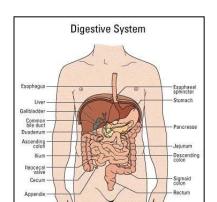

thermisch

Innovative Hochleistungsbauund -werkstoffe

Baustoffe und Baukomponenten


Enzyme

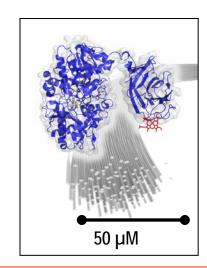
- Werden bereits seit langem zur Herstellung von Lebensmitteln (z.B. Käse) verwendet
- Sind zunehmend für industrielle Prozesse interessant
- ➤ Bei der Herstellung von > 20% aller Chemikalien werden Enzyme verwendet; Gründe hierfür:
 - hohe Spezifität, dadurch weniger Nebenprodukte
 - Anwendung unter milden Bedingungen
- Durch moderne Methoden des "protein engineering"
 - können Eigenschaften von Enzymen gezielt verändert und verbessert werden
 - diese Methoden sind an der BOKU sehr gut etabliert ("weiße Biotechnologie")
- Dafür 2 Anwendungsbeispiele auf der nächsten Folie



Universität für Bodenkultur Wien Department für Lebensmittelwissenschaften und Lebensmitteltechnologie

Anwendungsbeispiele für Enzyme

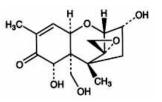
Enzyme für Präbiotika


- Durch Einsatz von Enzymen können aus Laktose, einem Reststoff der Molkereiwirtschaft, präbiotische Oligosaccharide erhalten werden
- Am DLWT der BOKU werden neue Enzyme für diesen Prozess erforscht und durch Einsatz von "protein engineering" verbessert

Universität für Bodenkultur Wien Department für Lebensmittelwissenschaften und Lebensmitteltechnologie

Enzymatische Biosensoren

- Biosensoren können geringste Konzentrationen einer Substanz selektiv in komplexen Proben (z.B. Lebensmittel) messen
- Zur Messung von Zuckern in der Lebensmittelindustrie und in medizinischen Anwendungen (Blutzzuckermessung) wird am DLWT an einer neuen Generation von Biosensoren geforscht,
 - Diese werden nun im Rahmen eines Start-up Unternehmens (*DirectSens*) zur Marktreife entwickelt



Schimmelpilzgifte in Lebensmitteln

Universität für Bodenkultur Wien

- Mykotoxine sind niedermolekulare, akut oder chronisch toxische, sekundäre Metaboliten von Schimmelpilzen
- Symptome lange bekannt, erst seit ca 1960 erforscht
 - ➤ Ausgangspunkt: Turkey X Disease → Aflatoxine entdeckt
- > Beinahe jedes landwirtschaftliche Gut kann betroffen sein
 - > 25% aller weltweiten Nahrung ist signifikant mit Mykotoxinen belastet (FAO)
- Jährlicher Verlust von hunderten Mio. Tonnen Nahrungsmittel
- Jährlicher wirtschaftlicher Verlust durch Mykotoxine
 - alleine in den USA ca. 1 Mrd. USD
- Große Forschungsanstrengungen weltweit

Mykotoxin-Projekte an der BOKU

■ SFB FUSARIUM (FWF):

- 5.7 Mill. EUR, 7 Jahre, koordiniert durch Ao. Prof. G. Adam
- 7 Partner (2 UFT, 2 IFA, 2 VIBT, 1 München)
- modernste Genomics- und Metabolomics-Methoden für das Studium der Resistenzmechanismen von Pflanzen

■ MycoRed (EU, FP7):

- 25 europäische Partner, 4 Jahre, WP-Leader Prof. R. Krska
- neuartige integrierte Strategien zur weltweiten Reduktion von Mykotoxinen in der Lebens- und Futtermittelkette

Christian Doppler Labor für Mykotoxin-Metabolismus (CDG):

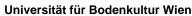
- 2.5 Mill. EUR, 7 Jahre, geleitet von Ass.Prof. F. Berthiller
- Industriepartner: Biomin + Nestlé
- pflanzlicher, mikrobieller und tierischer Metabolismus von Mykotoxinen und deren Detoxifikation

Universität für Bodenkultur Wien

Good Food, Good Life

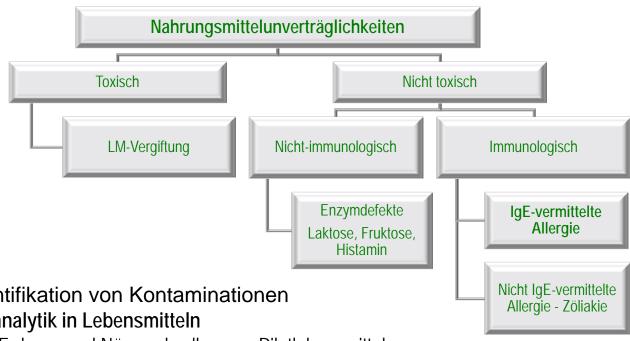
BOKU Campus Tulin - Technopol

Universität für Bodenkultur Wien



- > ~ 90 WissenschafterInnen in Tulln im Bereich Schimmelpilze und deren Toxine tätig:
 - > ~ 50 an BOKU (IFA+UFT), ~ 40 in 4 Firmen am Campus
 - Lange Tradition in erfolgreicher Kooperation
 Universität Wirtschaft
 - weltweit größter Forschungsstandort im Gebiet der Mykotoxinforschung
- ➤ Fächerübergreifende Zusammenarbeit in den Bereichen Mikrobiologie, Genetik, Mykologie, Toxikologie, Pflanzenzucht, Pflanzenpathologie, analytische und organische Chemie
- Kritische Masse erreicht, die es ermöglicht auch extrem komplexe Fragestellungen zu bearbeiten
- Weltweit führender Output an wissenschaftlichen Arbeiten und internationaler Anerkennung

Christian Doppler-Labor für die Analytik allergener Lebensmittelkontaminanten


Leitung: Sabine Baumgartner, Dept. IFA Tulln, Laufzeit 7 Jahre

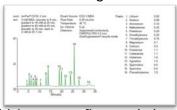
Problemstellung:

Ziele:

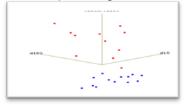
- Schnelle Identifikation von Kontaminationen
 - ➤ Allergenanalytik in Lebensmitteln
 - ➤ Milch, Ei, Erdnuss und Nüsse als allergene Pilotlebensmittel
- Rückverfolgbarkeit von Lebensmitteln
- Konzept "von der Farm zum Verbraucher"
- Neue Analytische Methoden für die Risikobewertung
 - für die Umsetzung von Richtlinien

Herkunftsanalyse von Lebensmitteln, technologischen Produkten und Kulturgütern

Universität für Bodenkultur Wien Department für Chemie


Bestimmung von eindeutigen chemischen Fingerabdrücken

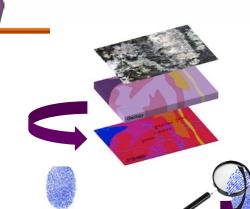
Moderne analytische massenspektrometrische Methoden Fälschungssichere Fingerabdrücke mit direktem Herkunftsbezug


Multi-Elementfingerabdruck

Multi-Molekülfingerabdruck

Multi-Isotopenfingerabdruck

Elementmassenspektrometrie



Molekülmassenspektrometrie

Isotopenmassenspektrometrie

BOKU Standort Türkenschanze

Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

Bauwerksbegrünung – Optimierung des urbanen Klimas

Beispiel Fassadenbegrünung am Amtshaus der MA 45 am Margaretengürtel in Wien

Herausforderung

Städte im 21. Jahrhundert

- → Hitzeinseln
- → Schadstoffe
- → Gesundheit und Lebensqualität
- → Heiz- und Kühlenergiebedarf
- → Überschwemmungen
- → Verlust an Standortattraktivität

Fassaden haben enormes Potenzial

- Mehrwert für Mensch und Gesundheit
- Mehrwert für Immobilien
- Reduktion von Schadstoffen
- Reduktion des Energiebedarfs
- Wasser- und CO₂-Speicherung
- Lebensqualität für Mensch, Tier und Pflanze

Entwickeln Sie gemeinsam mit uns die Lösungen für die Stadt der Zukunft mit dem Baustoff Pflanze

Science meets Business

Die BOKU und ihre Rolle im Innovationsprozess

Weitere Beispiele:

- > Posterausstellung am Ende der Veranstaltung
 - BOKU-WissenschaftlerInnen sowie
 - MitarbeiterInnen des BOKU-Forschungsservice freuen sich auf interessante Gespräche

Science meets Business

Die BOKU und ihre Rolle im Innovationsprozess

Rektor Univ.-Prof. Dipl.-Ing. Dr. Dr.h.c. mult. Martin H. Gerzabek

Danke für Ihre **Aufmerksamkeit**

