

### **Jonathan Cullen** jmc99@cam.ac.uk

### **UNIVERSITY OF** CAMBRIDGE











**Resource Efficiency Collective** is a research initiative at Cambridge University. Together, we seek answers to a challenging question: how can we deliver future energy and material services, while at the same time reducing resource use and environmental impact?



















### **Resource flow analysis**

The robustness of the higher level depends on the lower ones





# Global energy flows



# **Energy supply chain**



# Services efficiency (energy)

How can we deliver future energy and material services, while reducing resource use and environmental impact?



### Levers

Energy decarbonisation Energy efficiency Service efficiency Service reduction

### Watch out for rebound



# **Passenger transport distributions**

UK data, 2010

Distributions reveal differences in conversion efficiency and service delivery





# **Passenger transport distributions**

UK data, 2010



# Global energy flows



# Service efficiency (materials)

How can we deliver future energy and material services, while reducing resource use and environmental impact?



### Levers Energy decarbonisation

- Energy efficiency
- Material efficiency
- Product efficiency
- Service reduction



steel

### Global aluminum **Electrolysis / Melting** flows



Casting Rolling / Forming / Casting

### Fabrication

### **End-uses**

Global demand for aluminium

# **Global chemical flows**

### Report released 5 October



# From energy to chemical products, 2015 IEA Analysis





### Peter Levi PhD, IEA

Other chemical Nitrogen fertilizers production ~280 Mt Other products ~240 Mt Secondary products ~890 Mt

# **Energy inputs: feedstock versus process**





### **Energy inputs: feedstock versus process**

World

| 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                              |                                                                                                                                                              |                                                                                                                    |                                      |                                       |                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    |                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M                                                                                                    |                                                                              |                                                                                                                                                              |                                                                                                                    |                                      |                                       |                                                                                                                                                                   |                                                                                                               |                                                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    |                                   |
| SUPPLY AND<br>CONSUMPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Coal <sup>1</sup>                                                                                    | Crude<br>oil                                                                 | Oil<br>products                                                                                                                                              | Natural<br>Gas                                                                                                     | Nuclear                              | Hydro                                 | Geotherm.<br>solar<br>etc.                                                                                                                                        | Biofuels<br>& Waste                                                                                           | Electricity                                                                                                                                                                          | Heat                                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| Production<br>Imports<br>Exports<br>Stock changes                                                                                                                                                                                                                                                                                                                                                                                                                             | 4006.39<br>830.71<br>-861.05<br>-48.28                                                               | 4215.68<br>2246.43<br>-2181.49<br>-6.84                                      | -<br>1174.72<br>-1238.37<br>-0.59                                                                                                                            | 2908.63<br>872.91<br>-895.29<br>15.37                                                                              | 646.48<br>-<br>-                     | 325.93<br>-<br>-<br>-                 | 161.36<br>-<br>-<br>-                                                                                                                                             | 1375.46<br>15.89<br>-13.84<br>-0.50                                                                           | -<br>59.94<br>-56.99<br>-                                                                                                                                                            | 2.20<br>0.00<br>-0.01<br>-                                                                                                                                    | 13642.14<br>5200.61<br>-5247.03<br>-40.84                                                                                                                                                                                                                                                                                                                                          |                                   |
| TPES                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3927.77                                                                                              | 4273.78                                                                      | -64.25                                                                                                                                                       | 2901.63                                                                                                            | 646.48                               | 325.93                                | 161.36                                                                                                                                                            | 1377.02                                                                                                       | 2.95                                                                                                                                                                                 | 2.20                                                                                                                                                          | 13554.88                                                                                                                                                                                                                                                                                                                                                                           |                                   |
| Transfers<br>Statistical differences<br>Electricity plants<br>CHP plants<br>Heat plants<br>Blast furnaces<br>Gas works<br>Coke/pat.fuel/BKB/PB plants                                                                                                                                                                                                                                                                                                                         | -0.42<br>-170.55<br>-2094.33<br>-175.68<br>-134.45<br>-208.32<br>-7.22                               | -181.46<br>12.97<br>-39.86<br>-0.01<br>-0.79<br>-                            | 224.28<br>-9.27<br>-211.14<br>-16.74<br>-11.16<br>-0.43<br>-3.13                                                                                             | -0.00<br>10.27<br>-748.65<br>-322.41<br>-97.92<br>-0.04<br>3.44                                                    | -<br>-638.86<br>-7.63<br>-<br>-<br>- | -<br>-<br>-325.93<br>-<br>-<br>-<br>- | -<br>-0.00<br>-123.80<br>-2.55<br>-1.07<br>-                                                                                                                      | -0.36<br>-86.98<br>-55.66<br>-11.27<br>-0.03<br>-0.07<br>-0.13                                                | -<br>1.80<br>1824.70<br>179.71<br>-0.35<br>-                                                                                                                                         | -0.38<br>-0.63<br>149.74<br>178.68<br>-                                                                                                                       | 42.40<br>-155.51<br>-2445.47<br>-251.23<br>-78.33<br>-208.82<br>-6.99<br>-71.43                                                                                                                                                                                                                                                                                                    |                                   |
| Oil refineries<br>Retrochemical plants                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | пет                                                                          | BV                                                                                                                                                           |                                                                                                                    |                                      |                                       |                                                                                                                                                                   | -                                                                                                             | -                                                                                                                                                                                    | -                                                                                                                                                             | -73.66                                                                                                                                                                                                                                                                                                                                                                             | 0000 45                           |
| Liquefaction plants                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | 001                                                                          |                                                                                                                                                              |                                                                                                                    |                                      |                                       |                                                                                                                                                                   | -                                                                                                             | -                                                                                                                                                                                    | _                                                                                                                                                             | -12.73                                                                                                                                                                                                                                                                                                                                                                             | 2623.45                           |
| Other transformation<br>Energy industry own use                                                                                                                                                                                                                                                                                                                                                                                                                               | Iron                                                                                                 | i and                                                                        | stee                                                                                                                                                         |                                                                                                                    |                                      |                                       |                                                                                                                                                                   | -78.20<br>-13.80                                                                                              | -168.63                                                                                                                                                                              | -0.74<br>-34.80                                                                                                                                               | -82.30<br>-819.8 <b>3</b>                                                                                                                                                                                                                                                                                                                                                          | 473.90                            |
| Losses                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cho                                                                                                  | mio                                                                          |                                                                                                                                                              | d not                                                                                                              | roch                                 | omi                                   |                                                                                                                                                                   | -0.15                                                                                                         | -163.67                                                                                                                                                                              | -20.20                                                                                                                                                        | -218.25                                                                                                                                                                                                                                                                                                                                                                            | 200.00                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Che                                                                                                  |                                                                              |                                                                                                                                                              | r hei                                                                                                              |                                      | enn                                   |                                                                                                                                                                   | 1130.35                                                                                                       | 710.20                                                                                                                                                                               | 273.88                                                                                                                                                        | 9172.80<br>2628.44                                                                                                                                                                                                                                                                                                                                                                 | 300.99                            |
| Iron and steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nor                                                                                                  | ו-ferr                                                                       | ous i                                                                                                                                                        | neta                                                                                                               | ls                                   |                                       |                                                                                                                                                                   | 3.70                                                                                                          | 99.65                                                                                                                                                                                | 16.46                                                                                                                                                         | 478.90                                                                                                                                                                                                                                                                                                                                                                             | 118.87                            |
| Chemical and petrochemical<br>Non-ferrous metals                                                                                                                                                                                                                                                                                                                                                                                                                              | Nor                                                                                                  |                                                                              | tallia                                                                                                                                                       | min                                                                                                                | arala                                |                                       |                                                                                                                                                                   | 1.51<br>0.13                                                                                                  | 97.45<br>77.78                                                                                                                                                                       | 46.82<br>3.46                                                                                                                                                 | 365.99<br>113.87                                                                                                                                                                                                                                                                                                                                                                   | 261.67                            |
| Non-metallic minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                         | INOI                                                                                                 | i-me                                                                         | lanic                                                                                                                                                        | mme                                                                                                                | erais                                |                                       |                                                                                                                                                                   | 8.81                                                                                                          | 49.91                                                                                                                                                                                | 2.53                                                                                                                                                          | 361.67                                                                                                                                                                                                                                                                                                                                                                             | 301.07                            |
| Transport equipment<br>Machinery<br>Machinery<br>Mining and quarrying<br>Food and tobacco<br>Paper pulp and printing<br>Wood and wood products<br>Construction<br>Textile and leather<br>Non-specified<br><b>TRANSPORT</b><br>World aviation bunkers<br>Domestic aviation<br>Road<br>Rail<br>Pipeline transport<br>World marine bunkers<br>Domestic navigation<br>Non-specified<br><b>OTHER</b><br>Residential<br>Comm. and publ. services<br>Agriculture/forestry<br>Fishing | 14.68<br>7.46<br>23.67<br>18.96<br>2.43<br>4.40<br>10.77<br>86.86<br>3.54<br>3.34<br><b>NC</b><br>in | 0.01<br>0.00<br>0.01<br>10.14<br>0.02<br>0.02<br>0.02<br><b>DN-E</b><br>indu | 7.83<br>24.13<br>10.50<br>4.38<br>1.72<br>27.94<br>3.49<br>124.70<br><b>2361.75</b><br>163.55<br>100.13<br>1823.17<br>31.25<br>0.37<br><b>ENEF</b><br>stry/t | 23.75<br>7.26<br>42.07<br>22.55<br>2.54<br>7.16<br>5.27<br>169.05<br>96.19<br>35.47<br>60.02<br><b>RGY</b><br>rans | USE<br>f./en<br>/petr                | erg<br>oche                           | 0.00<br>0.00<br>0.17<br>0.00<br>0.00<br>0.00<br>0.66<br>0.00<br>0.66<br>0.00<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.02<br>0.22<br>0.18<br>32.24<br>55.39<br>10.47<br>0.39<br>0.26<br>80.23<br><b>64.52</b><br>63.71<br>0.38<br> | 21.42<br>78.58<br>28.88<br>39.32<br>36.66<br>8.53<br>13.96<br>28.54<br>129.61<br><b>25.82</b><br>0.25<br>19.50<br>2.87<br>3.20<br><b>940.40</b><br>451.00<br>375.02<br>47.09<br>0.41 | 3.84<br>7.10<br>2.65<br>11.61<br>11.36<br>2.01<br>1.79<br>5.87<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | <ul> <li>48.81</li> <li>132.16</li> <li>70.56</li> <li>159.43</li> <li>149.47</li> <li>27.70</li> <li>55.63</li> <li>56.14</li> <li>607.12</li> <li>2551.85</li> <li>163.55</li> <li>100.13</li> <li>1922.61</li> <li>54.47</li> <li>63.29</li> <li>190.37</li> <li>48.13</li> <li>9.32</li> <li>3198.72</li> <li>2130.56</li> <li>745.29</li> <li>192.69</li> <li>7.95</li> </ul> | <b>798.77</b><br>769.96<br>577.14 |
| Non-specified<br>NON-ENERGY USE                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                                                                   | trans                                                                        | sport                                                                                                                                                        |                                                                                                                    |                                      |                                       |                                                                                                                                                                   | 2.69                                                                                                          | 66.88                                                                                                                                                                                | 5.90                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                    | 12.22                             |
| in industry/transf./energy<br>of which: chem./petrochem.<br>in transport<br>in other                                                                                                                                                                                                                                                                                                                                                                                          | in                                                                                                   | othe                                                                         | r                                                                                                                                                            |                                                                                                                    |                                      |                                       |                                                                                                                                                                   | -                                                                                                             | -                                                                                                                                                                                    | -                                                                                                                                                             | 760.96<br>577.14<br>12.22<br>16.60                                                                                                                                                                                                                                                                                                                                                 | 16.60                             |

Energy consumption 10% of total global final energy 27% of industrial final energy Challenging sector to decarbonize

Source: IEA, DECHEMA & ICCA (2013) Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes

Source: IEA (2016) World Energy Balances.

### Greenhouse gas emissions

- 7% of anthropogenic GHG emissions
  - 20% of industrial GHG emissions
  - Many more upon latent release

# Feedstock energy is increasing as a share of inputs



Source: IEA (2016) World Energy Balances.

# The challenge for petrochemicals

A 2.8-fold increase in demand is projected for the sector's 18 most energy-intensive large volume chemicals, over the period 2010-50.

A 30% reduction in direct CO<sub>2</sub> emissions with respect to current levels is required in industry by 2050, to maintain a 2DS trajectory

Source: IEA, DECHEMA & ICCA (2013) *Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes* 



# **Global chemical flows**







Feedstock energy ∽25 EJ yr<sup>-1</sup>



### **Chemical products**

# Feedstock mapping matrix





# Global chemical flows



Source: Levi & Cullen (2017) Mapping global flows of chemicals: From fossil fuel feedstocks to chemical products

# Sustainable Materials : with both eyes open



ALWORD BUILDING

THING EXPLAINED

The Bead to Character 👄 DAVID EBOOKS

SUSTAINABLE MATERIALS TELES

www.withbotheyesopen.com free download



# **Global steel picture**



### Emissions

Steel is responsible for ~10% of global CO<sub>2</sub> emissions from energy and industrial processes

### Demand

Global demand for steel has increased four-fold over 50 years, and is expected to more than double by 2050

### Intensity

Steel production is already efficient. But halving emissions by 2050 will require a further 75% cut per tonne of steel

### With one eye open

Energy efficiency few efficiency gains left, perhaps 10–20%

Novel processes DRI, HIsarna, Smelt Reduction, Electrolysis, Hydrogen

**Recycling** increase recovery to 90%

Low carbon energy renewables, nuclear, CCS

50% emission reduction per tonne 0% reduction in absolute emissions











### With both eyes open









Use less by design 30% saving from putting metal in the right place

**Reduce yield losses** <sup>1</sup>/<sub>4</sub> of all liquid metal is scrapped during production

**Divert scrap** to other uses

**Re-use with no melting** profitable in construction

Longer life products spread impacts over time

**Reduce final demand** with more intense use

75% emission reduction per tonne 50% reduction in absolute emissions

# **Material efficiency**

" Material efficiency could deliver larger energy savings in energyintensive industries than energy efficiency.



Note: NPS = New Policies Scenario; MES = Material Efficiency Scenario.

# "



International **Energy Agency** 

# Long-term potential for emissions reduction



With one eye open

### Challenges

Key technologies are still under development

Novel technological are expensive

Replacement cycles for steel plants are slow

Scrap availability is constrained in a growing market

Renewable energy will likely be prioritised for other sectors



With both eyes open

### Challenges

Changing behaviour of consumers is difficult

Circular economy business models are not necessarily profitable

Reconfiguring supply chains for reuse is challenging, requiring new rules to allocate value

Efforts to map how materials flow through society are still in their infancy

# Integrated resource efficiency analysis





### Ana Gonzalez Hernandez PhD, Emerson

Cambridge University is collaborating with Emerson to develop novel tools that can prepare industry for the future low-carbon and resource-efficient production era

# **Opportunities from average to top quartile**



API, Solomon, OSHA, IHS Markit and Company Reports

# Service efficiency (materials)



### How do we measure this efficiency?



# **Combining energy and materials**



# Theoretical minimum

### Resource efficiency

### **Useful output**

### **Resource input**

# **Combining energy and materials : using exergy**



### Useful exergy outputs

### External exergy losses

### Internal exergy losses

searchable database of exergy

values and calculation formulas

for materials and energy.

### Data from 38 plants





worldsteel

Gonzalez Hernandez A, Paoli L, Cullen JM (2018) How resource-efficient is the global steel industry?, Resources, Conservation and Recycling, 133: 132–145



### **Case study 1**

### Data from 38 plants



CO: coke oven; BF: blast furnace; BOS: basic oxygen steelmaking; HSM: hot-strip mill; EAF: electric arc furnace; DRI: directly reduced ironmaking; SI: sintering; PP: power plant; GP: gas plant







### Data from 38 plants





### What insights can we gain?

### Data from 38 plants



# Case study 1

# material and energy efficiency options, using a pragmatic

### Real-time control data





### Real-time control data

Resource efficiency across 900 batches

Gonzalez Hernandez et al. (2018) Applied Energy



### **Case study 2**

### Real-time control data







### Real-time control data



Two performance modes: arise because BOS gas is not recovered for every batch; in some batches it is still flared (lack of holding volume)

Variation within higher mode: partly a result of the differences in the calorific value of the BOS gas, caused by variations in the gap for the converter lid







Water-cooled fume collection hood



### Real-time control data









### Material efficiency savings are potentially as large as process energy efficiency

# **Resource efficiency**

### **Going forward**

- ★ Need to track supply chains from service delivery back to impact
- Need to consider the whole system,
   i.e. both energy and materials
- ★ Exergy is a useful for measuring energy and materials on the same scale, reducing the complexity of efficiency metrics
- ★ Watch out for rebound when pulling one lever, in another lever



