

ASSESSMENT OF DWARF BUNT AND COMMON BUNT RESISTANCE IN WHEAT DIFFERENTIAL LINES

Pabitra Joshi¹, Guriqbal Dhillon¹, David Hole², Tyler Gordon³, Hermann Burstmayr⁴, Magdalena Ehn⁴, Will Krause², Margaret Krause², and Jianli Chen^{1*}

IMPORTANCE OF THE DISEASE

- Dwarf bunt (caused by *T. controversa* Kühn) and common bunt (caused by *Tilletia laevis* Kühn and *T. tritici* (Bjerk.) Wint) are two destructive diseases.
- Severely reduce grain yield and quality when epidemic occurs.

COMMON SYMPTOMS OF CB AND DB

A: Severe height reduction causing dwarfing (DB)

B: Increase in tiller number (DB, sometimes CB)

C: Increased grain size, more green and open glume exposing infected seed (CB & DB)

D: Increased florets

E: Mature seed more rounded and bigger in size, with brownish to blackish color, releasing black teliospores (DB & CB)

CIMMYT

ESSENTIAL TO REASSESS BUNT RESISTANCE IN DIFFERENTIAL LINES

- Resistance to CB and DB was controlled by the same set of genes, Bt1 to Btp.
- Bunt differential lines have been extensively used in genetic study of the resistance genes.
- Multiple genes were observed in some of differential lines.
- Different genetic control was observed in the same differential line.

OBJECTIVE OF THE PRESENT STUDY

To assess genetic variation for resistance to common bunt and dwarf bunt in a set of differential lines over years and across different countries

MATERIALS USED

Bt-0	PI 209794
Bt-1	PI 554101
Bt-2	PI 554097
Bt-3	Cltr 6703
Bt-4	PI 11610
Bt-5	Cltr 11458
Bt-6	Cltr 10061
Bt-7	PI 554100
Bt-8	PI 554120
Bt-9	PI 554099
Bt-10	PI 554118
Bt-11	PI 554119
Bt-12	PI 119333
Bt-13	PI 181463
Btp	PI 173437
Bt-unknown	PI 173438

DISEASE SCREENING TRIALS

Published data:

- DB BLUE data, Gordon et al., 2020: CB BLUE data, Ehn et al., 2022

Utah State University Trials, USA:

- Composite inoculum of dwarf bunt races collected in Logan, UT
- *Bt1* to *Bt13* differentials were assessed for dwarf bunt resistance from 2016 to 2022, 16DB_UT, 17DB_UT, 18DB_UT, 19DB_UT, 20DB_UT, 22DB_UT

IFA, Austria Trials:

- "IFA aggressive" inoculum of common bunt
- Bt1 to Bt7, Bt11, Bt12,Bt13 and Btp were assessed in 2021 and 2022

University of Idaho Greenhouse Trials:

- Locally collected composite inoculum of common bunt was used
- *Bt2, Bt4, Bt7, Bt8, Bt9, Bt10, Bt12, Bt13* bunt differential lines were assessed in two greenhouse experiments in 2022

I

INOCULATION METHOD AT USU

- Grind the spores
- Mix with water and make slurry solution
- Spray in field with tractor at seedling stage right before snowing
- We use 1 gram of ground spores per 1.2-meter row for inoculation

Grind

Spore water Slurry

Spray

INOCULATION METHOD AT UI

DATA COLLECTION AND ANALYSIS

- Percentage of bunt infection was calculated based on visual assessment in the field in the differential lines.
- Wheat 90K iSelect data for differential line was used to make relationship tree using TASSEL software.
- KASP markers associated with dwarf bunt resistance for the 6DL QTL.
- Statistical Analysis: Bar graphs were made using excel.

RESULTS

HEAD TYPE CHARACTERIZATION

Fig1: Head type of differential lines (A=Bt-0, B=Bt-1, C= Bt-2, D=Bt-3, E=Bt-4, F=Bt-7, G=Bt-8, H=Bt-9, I= Bt-9 (another type of head), J=Bt-10, K=Bt-11, L=Bt-12, M=Bt-13, N=Btp)

CLUSTER ANALYSIS – ALL SNP

CB & DB INCIDENCE PUBLISHED DATA

DWARF BUNT INCIDENCE ACROSS YEARS IN UT, USA

COMMON BUNT INCIDENCE ACROSS YEARS IN BOKU, AUSTRIA

COMMON BUNT INCIDENCE IN GREENHOUSE, UI, USA

SUMMARY

- The differential lines Bt-8, Bt-11, and Bt-12 consistently showed resistant reactions to both Europe common bunt races, Idaho common bunt races, and Utah dwarf bunt races.
- Bt-9 and Bt-10 exhibited resistant reactions to Europe common bunt races but susceptible reactions to Idaho common bunt races. Additionally, their reactions to Utah dwarf bunt races varied over the years. Bt-13 is opposite to Bt-9 and Bt-10.
- Our assessment of head types in the greenhouse revealed some unexpected variations, particularly in Bt-9.
- Cluster tree shows the similarity and differences of differential lines with each other

ACKNOWLEDGEMENT

University of Idaho

Idaho Agricultural Experiment Station

COMMISS

CALL FOR COLLABORATION

- Collect sources of differential lines
- Jointly assess CB and DF resistance in same disease nurseries
- Jointly assess marker haplotypes
- Joint grant applications