

IMPROVING CROPS

How long does it take to develop high performing and common bunt resistant winter wheat lines using organics-compliant methods? XXII International Workshop on Bunt and Smut Diseases June 13 2023, Tulln, Austria

Magdalena Lunzer

Wednesday, June 14, 2023

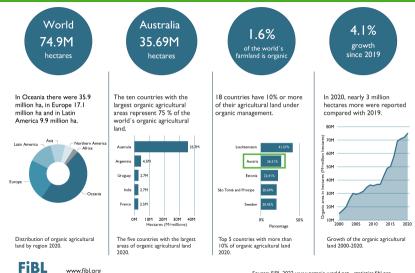
Institute of Biotechnology in Plant Production, IFA Tulln, Austria

The Problem

Common bunt caused by *Tilletia tritici* and *T. laevis*

Refreshing Your Memory...

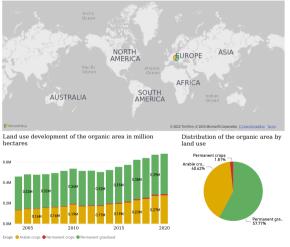
- 1) winter wheat trials, sowing in November
- 2 artificial inoculation with teliospore suspension
- (3) infection with "IFA Aggressive" inoculum (higher virulence)
- **4** scoring: cutting open 100 heads per plot
- **(**) incidence in % (0/1 scoring)


Organics-Compliant

common bunt is mainly a problem in organic agriculture

- no seed dressings with systemic fungicides allowed
- high amount of farm-saved seeds sown in Austria
- contamination via neighbouring fields possible
- EU organics regulation also binding for seed production
- genome editing currently regarded as GMO in the EU
- possible future restrictions on currently registered fungicides

Organic Agriculture - Acreage Worldwide in 2020

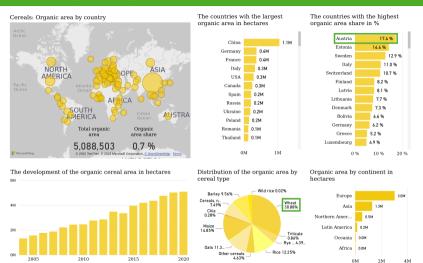


Source: FiBL 2022 www.organic-world.net - statistics fibl.org

Organic Agriculture - Land Use Development in Austria

Land use: Organic area by country

The countries wih the largest organic area in million hectares



FiBL survey based on national data sources, data from certifiers, and Eurostat: https://statistics.fibl.org

Organic Agriculture - Cereals Production

FiBL survey based on national data sources, data from certifiers, and Eurostat: https://statistics.fibl.org

Project Overview

Aim: Combine marker-assisted foreground and genomics-assisted background selection in populations with introgressed exotic resistance alleles

Key Facts

- experimental "back-cross" population: BC₃F_{2:5}
- resistance donors: Blizzard, Bonneville and Pl119333
- marker-assisted selection via KASP-markers for resistance QTL in F1 and F2
- genomics-assisted background selection in BC₂F₁ via GEBVs
- validation through **field testing** in generations $F_{2:3}$ and $F_{2:4}$

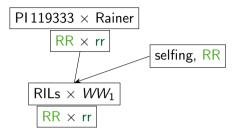
Common Bunt Resistance QTL

3 resistance donors - QTL mapped by Muellner et al. (2020, 2021) - markers available

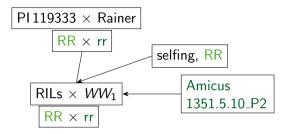
7A

1A

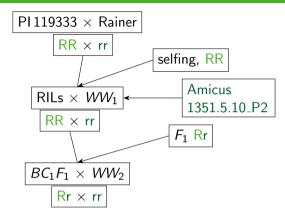
- major eff. on CB + dwarf bunt (DB)
- 498.5 516.6 Mbp
- 205 Blizzard/Bonneville-RILs

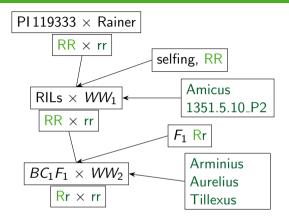

1**B**:

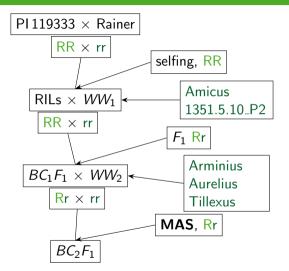
- major effect on CB, no effect on DB
- 8 22 Mbp
- 205 Blizzard/Bonneville-RILs

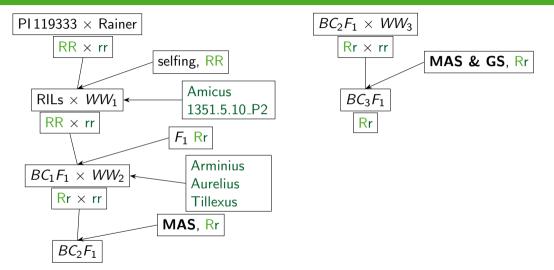

- medium eff. on CB, small eff. on DB
- 711 737 Mbp
- 120 <u>Blizzard</u>-RILs

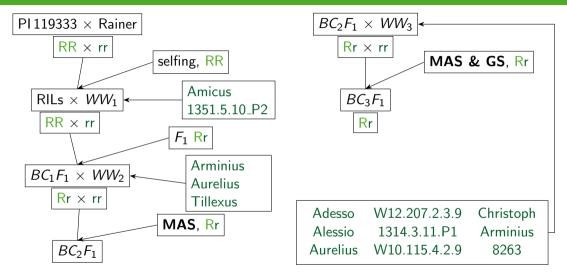
Bt12 - 7D:

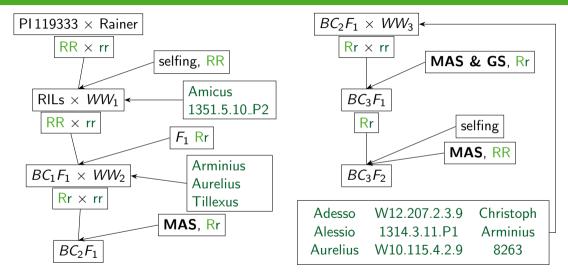

- major effect on CB + DB
- 6.5 10.8 Mbp
- 80 PI 119333-RILs

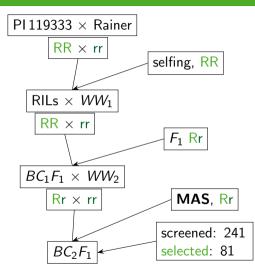


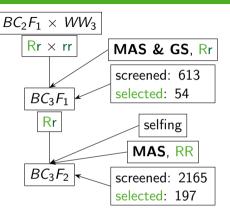


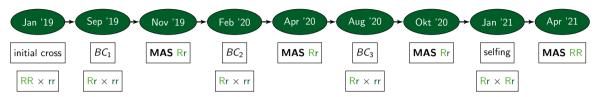


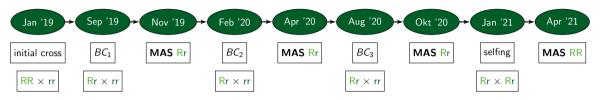


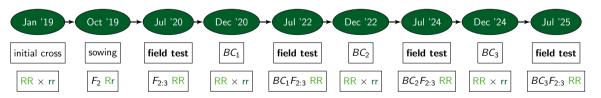




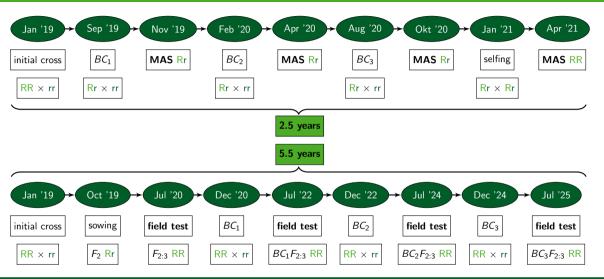



Population Development - Selection Efficiency


Population Development - Theoretical Timeline



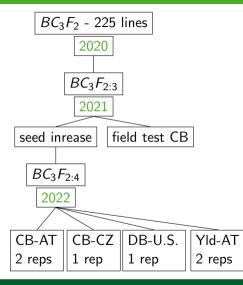
Population Development - Theoretical Timeline



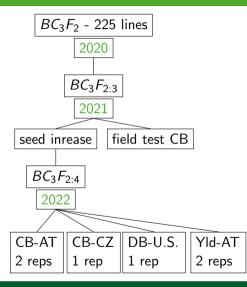
Magdalena Lunzer — XXII International Workshop on Bunt and Smut Diseases

Ĭ

Population Development - Theoretical Timeline

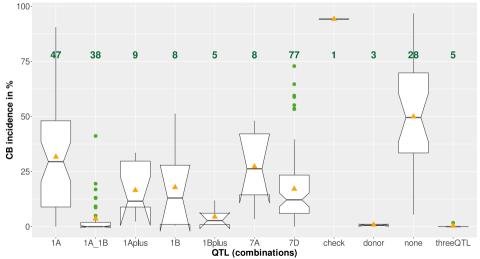


Magdalena Lunzer — XXII International Workshop on Bunt and Smut Diseases


ĭ

Population Development - Resource Efficiency

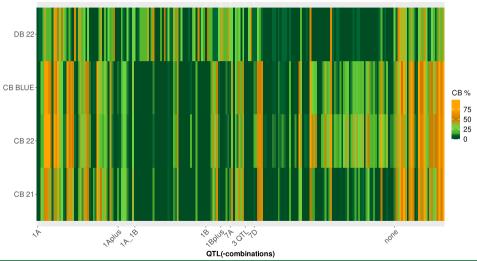
Population Development - Resource Efficiency


Key Points

- 3 steps of MAS
 (BC₂F₁, BC₃F₁, BC₃F₂)
- 2 1 step of genomics-assisted selection
- **3** resource efficiency for field testing:
 - 2165 BC₃F₂ plants screened (MAS)
 - 225 tested in field trials
 - 106 lines <10 % CB incidence
- 4 5 different genotypes/pedigree
- 6 all lines genotyped with 7K SNP-array

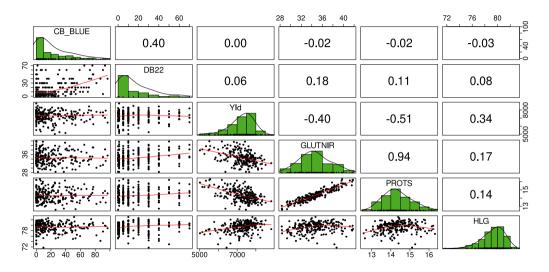
Goal 1: Is It Bunt Resistant?

BLUEs for CB incidence in lines possessing different resistance QTL

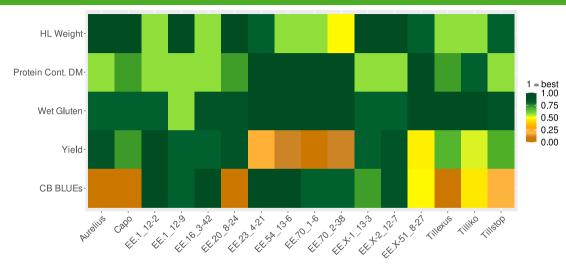


ň

Goal 1: Is It Bunt Resistant?

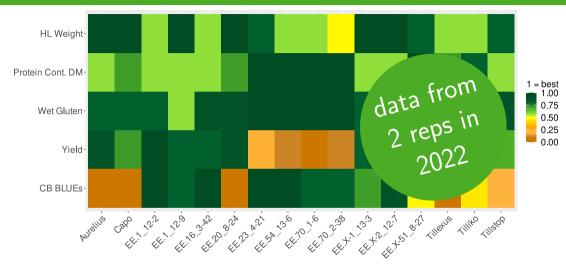

Heatmap of Bunt Scorings per Line

Goal 2: Is It Also High-Performing?




Magdalena Lunzer — XXII International Workshop on Bunt and Smut Diseases

ĭ


Goal 2: Is It Also High-Performing?

Goal 2: Is It Also High-Performing?

Application of MAS reduces time needed for population development by more than 50 %

Application of MAS reduces time needed for population development by more than 50 %

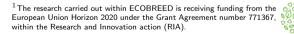
- marker-assisted selection worked well in most genotypes
- selection escapes due to unsuitable markers and recombination events
- high genetic variation through complex pedigrees "background selection"

Application of MAS reduces time needed for population development by more than 50 %

- marker-assisted selection worked well in most genotypes
- selection escapes due to unsuitable markers and recombination events
- high genetic variation through complex pedigrees "background selection"
- yield trials repeated in 2023 further validation
- testing under organic conditions missing
- durable bunt resistance needed stacking of resistance loci

Application of MAS reduces time needed for population development by more than 50 %

- marker-assisted selection worked well in most genotypes
- selection escapes due to unsuitable markers and recombination events
- high genetic variation through complex pedigrees "background selection"
- yield trials repeated in 2023 further validation
- testing under organic conditions missing
- durable bunt resistance needed stacking of resistance loci


Successful development of breeding material combining resistance to bunt diseases with competitive yield and quality characteristics

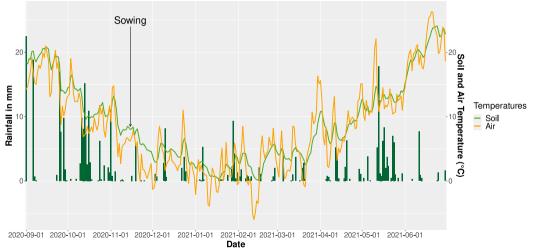
Supervisors, Collaborators and Funding Agencies

- <u>Hermann Bürstmayr</u> and all colleagues at the institute (IFA-BP)
- AgriGenomics DocSchool & Advisory Board
- Margaret Krause (Utah State University, U.S.)
- Veronika Dumalasová (CRI Prague-Ruzyně, CZ)
- Austrian Academy of Sciences (OEAW) -DOC-fellowship (grant nr. 25453)
- ECOBREED¹ Heinrich Grausgruber

IMPROVING CROPS

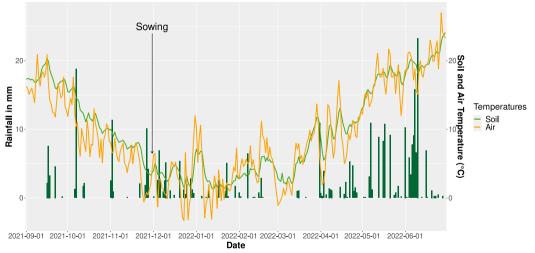
Thank you for your attention!

Marker Polymorphisms: Example Bt12-Population

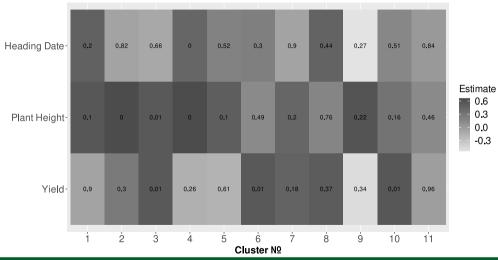

resistance donor has <u>Allele 1</u>, all other parental lines in pedigree have <u>Allele 2</u>

Marker	47	48	49	50	51		47	48	49	50	51
Mbp	10.8	10.7	9.3	8.3	8.2		10.8	10.7	9.3	8.3	8.2
BC_1						BC ₃					
Amicus	0	0	1	1	0	Adesso	0	0	1	0	0
1351.5.10	1	1	1	1	1	Alessio	1	1	1	1	1
BC_2						Christoph	1	1	1	1	1
Arminius	1	1	1	1	1	1314.3.11	1	1	1	1	1
Aurelius	1	1	1	1	1	W10.115	1	0	0	0	1
Tillexus	1	1	1	1	1	W12.207	1	0	0	0	1
						SZD8263	1	1	1	1	1

Environmental conditions 2020/21



Environmental conditions 2021/22


Rainfall, Soil Temperature and Air Temperature in the 2021/2022 Season

Correlations with GEBVs

Correlation between GEBVs and phenotypes for different traits

No more slides

