Latest Projects

Research project (§ 26 & § 27)
Duration : 2024-02-15 - 2026-02-14

Development of a process to produce recombinant Influenza Neuraminidase (rNA) antigen in the baculovirus system, and especially downstream processing/purification will be performed in collaboration between the Icahn School of Medicine at Mount Sinai and the University of Natural Resources and Life Sciences to optimize an affinity purification-based downstream process for production of his-tagged rNA which can be successfully implemented at the CMO Expression Systems to produce enough rNA for a Collaborative Influenza Vaccine Innovation Centers (CIVICs) phase I clinical trial. Furthermore, to develop a high-yielding tag-less purification process that would allow us to get sufficient protein yields for post-phase I clinical development and lastly, to perform testing of alternative rNA expression constructs and expression systems. Doing this work will enable us to test rNA vaccines in clinical trials and may also provide a commercial path forward for rNA protein-based vaccine development in general.
Research project (§ 26 & § 27)
Duration : 2023-02-01 - 2026-01-31

Magnesium is an essential component of chlorophyll for plant physiology. Low Mg content in the leaves of grapevines reduces photosynthesis and, thus, glucose production and, consequently, lower wine quality. The right choice of rootstock is essential to alleviate this deficiency. However, the necessary Mg efficiency restricts the selection of the rootstocks, and in particular, the rootstocks that have been tried and tested in this country are less suitable. The deficiency can also be remedied by fertilizing the leaves, at least in the short term. But, the most sustainable solution would be to plant clones with an unproblematic Mg metabolism. An important grape variety for Austrian viticulture is mainly affected by Mag deficiency, namely Welschriesling (WR). The WR clones that are available for domestic viticulture all show more or less a weak Mg uptake. The variety has been used in viticulture for several centuries and was intensively cultivated and therefore exists in different genetic types. Since the old descriptions do not report this Mg deficiency, it is entirely conceivable that there is genomics in old genotypes that show average Mg utilization. Therefore, it would be necessary to look for genotypes that offer a better uptake and research it genetically. It is well known that crop phenotypic variation is shaped by their ancestors’ genetic variation and the selection and maintenance of collections of mutations. Moreo ver, most of this varia ti on is quan ti ta ti ve. Therefore, more than ever, an essential goal of genetics is to identify and use appropriate bio-markers for selection. In this way, appropriate biomarkers could be developed for the selection of WR, which enables a distinction between Mg-efficient and inefficient, which is very important for winegrowers. New clones with Mg efficiency would strengthen the local vine nurseries and viticulture and could also mean that vine material can be delivered to the neighbouring countries Hungary, Croa tia, Slovenia and Slovakia because the problem also exists there. Furthermore, this would result in a competitive advantage for domestic planting stock companies.
Research project (§ 26 & § 27)
Duration : 2020-08-01 - 2023-01-31

Sugar beet (Beta vulgaris ssp. vulgaris) is a young crop plant that originated from wild sea beet (Beta vulgaris ssp. maritima), a coastal plant native to Western and Southern Europe. It has been shown that transposons have influence onto the genome structure and gene functionality of beets. Of the many different repeats contained in a genome, only a small subset is intact and fully functional. However, this small portion may have a huge impact on the genome and as consequence on the phenotype as well. By creating alternative splicing patterns, introduction of novel promoters, change of gene regulation or simply by inactivation of gene function. Thus, the genome is constantly in motion: Transposons get inserted into new positions in the genome; thereafter, selection and mutational processes act upon them. Repeats disrupting crucial functions will disappear quickly, while other elements which are neutral or even beneficial will stay on. By comparing different genomic sequence data of domesticated beets and their wild relatives, we assess the mutagenic events that took place in the beet genome in the recent evolutionary past and explore the role that transposons have played in the evolution of the beet genome. Advances in the repeat-related knowledge of the beet genome may discover new insights about recent transposon evolution and will provide a foundation for further improvements of beet as a crop plant.

Supervised Theses and Dissertations