Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2022-06-01 - 2025-05-31

The final sensorial quality of a wine is the result of a multitude of interactions between all the chemical components within the wine and specific environmental factors such as the temperature of the wine. Since influenced by numerous factors such as grape varieties, growing conditions, climate change, yeast strains, wine making technologies, human experiences, the evaluation and preservation of wine quality – in terms of reproducibility from year to year - is nowadays the main challenge for both wine producers and wine science community. Viticultural practices aim primarily at producing high quality grapes that would reflect varietal flavours and aromas and/or characters typical for a specific region or terroir. In Austria, Districtus Austriae Controllatus (DAC) is a classification for regionally typical quality wine that provides products of distinction in wine market. An accurate evaluation and assessment of the wine quality, identity and typicity is of high significance for vintners to perform proper wine classification and target marketing. The aim of this project is on grape and wine quality evaluation, and regional typical quality characterization and prediction using elemental and sensory analysis, non-targeted and targeted metabolomics, spectroscopic approaches, and artificial intelligence. Grape quality is the most important factor for making high quality wine and some grape metabolites can have a strong relation to the wine quality. The relationship between the grape metabolites and the wine quality will be explored using non-targeted metabolomics and spectroscopic approaches and wine quality prediction models generated by artificial intelligence and machine learning algorithms. Of particular focus in this project is providing detailed chemical characterization that elucidates the influence of the Viennese wine growing region (origin) on Viennese Gemischter Satz DAC and Grüner Veltliner. As final output of the project, software, apps and a unique quality mark tag will be developed, for wine quality prediction and authenticity assessment based on established databases. This solution will be designed and developed to prove the identity and authenticity of each bottle and trace them. In turn, the outcomes of this project aim to both support origin marketing and future maintenance of wine production processes and wine quality in Vienna.
Research project (§ 26 & § 27)
Duration : 2020-08-01 - 2023-10-31

The aim of this research project is the identification of ground water formation in the various meteorological conditions in the Austrian Alps and to investigate climate-induced changes related to the ground water formation. Emphasis is further on quantifying water reserves stored in intact rock glaciers as permafrost based ground water. The level of knowledge concerning the impact of the climate change on the alpine permafrost will be significantly enhanced thereby.
Research project (§ 26 & § 27)
Duration : 2021-06-01 - 2025-10-31

Strain and process improvement is one of the most labour-intensive and time-consuming phases of biotechnology process development. High-throughput screening is usually in miniaturized static cultures which compromises scalability, so that further intermediate screening steps are needed. Maturing of existing technology to deal with additional cell culture types (i.e. mammalian cells) and incorporate further analytical developments to support metabolite and product screening requirements are identified as the key steps to creating a technology of commercial value. In this project, we propose to mature an existing µ-screening platform with two major pillars addressing these steps. Firstly, extending the applicability of the module to fermentation technology based on Chinese Hamster Ovary (CHO) cultures. Secondly, to expand the analytical value of the platform using a combination of valve technology and mass spectrometry to develop a fully integrated platform suitable for application in biotechnology facilities.

Supervised Theses and Dissertations