publications
Insights into the flexibility of the domain-linking loop in actinobacterial coproheme decarboxylase through structures and molecular dynamics simulations
Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: Propionate interactions and porphyrin core deformation
Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions
Structural aspects of enzymes involved in prokaryotic heme biosynthesis
Iron insertion into the coproporphyrin III-ferrochelatase complex: evidence for an intermediate distorted catalytic species
Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation
Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogen-bonding interactions of the four propionate groups
Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C. diphtheriae
Redox Cofactor Rotates during Its Stepwise Decarboxylation: Molecular Mechanism of Conversion of Coproheme to Heme b
selected publications
Patil, G., Alonso de Armiño, J. A., Borek, D., Furtmüller, P. G., Estrin, D. A., Hofbauer, S. 2025. Insights into the flexibility of the domain-linking loop in actinobacterial coproheme decarboxylase through structures and molecular dynamics simulations. Protein Sci., 34, e70027, doi: 10.1002/pro.70027
Dali, A., Gabler, T., Sebastiani, F., Furtmüller, P. G., Becucci, M., Hofbauer, S., Smulevich, G. 2024. Entrance channels to coproheme in coproporphyrin ferrochelatase probed by exogenous imidazole binding. J. Inorg. Biochem., 260, 112681, doi: 10.1016/j.jinorgbio.2024.112681
Dali, A., Sebastiani, F., Gabler, T., Frattini, G., Moreno, D. M., Estrin, D. A., Becucci, M., Hofbauer, S., Smulevich, G. 2024. Proximal ligand tunes active site structure and reactivity in bacterial L. monocytogenes coproheme ferrochelatase. Spectrochimica Acta Part A., 313, 124120, doi: 10.1016/j.saa.2024.124120
Gabler, T., Dali, A., Bellei, M., Sebastiani, F., Becucci, M., Battistuzzi, G., Furtmüller P. G., Smulevich, G., Hofbauer, S. 2024. Revisiting catalytic His and Glu residues in coproporphyrin ferrochelatase – unexpected activities of active site variants. FEBS J., 291, 226-2272, doi: 10.1111/febs.17101
Zamocky, M., Hofbauer, S., Gabler, T., Furtmüller, P. G. 2023. Molecular Evolution, Structure, and Function of Coproporphyrinogen Oxidase and Protoporphyrinogen Oxidase in Prokaryotes. Biology, 12, 1527, doi: 10.3390/biology12121527
Gabler, T., Dali, A., Sebastiani, F., Furtmüller, P. G., Becucci, M., Hofbauer, S., Smulevich, G. 2023. Iron insertion into the coproporphyrin III-ferrochelatase complex: evidence for an intermediate distorted catalytic species. Protein Sci., 32, e4788 doi: 10.1002/pro.4788
Falb, N., Patil, G., Furtmüller, P. G., Gabler, T., Hofbauer, S. 2023. Structural aspects of enzymes involved in prokaryotic heme biosynthesis. Comp. Struct. Biotechnol., 21, 3933-3945 J., doi: 10.1016/j.csbj.2023.07.024
Patil, G., Michlits, H., Furtmüller, P. G., Hofbauer, S. 2023. Reactivity of coproheme decarboxylase with monovinyl, monopropionate deuteroheme. Biomolecules, 13, 946, doi: 10.3390/biom13060946
Sebastiani, F., Dali, A., Alonso de Armiño, J.A., Campagni, L., Patil, G., Becucci, M., Hofbauer, S., Estrin, D., Smulevich, G. 2023. The role of the distal cavity in carbon monoxide stabilization in the coproheme decarboxylase from C. diphtheriae. J Inorg Biochem, 112243, doi: 10.1016/j.jinorgbio.2023.112243
Sebastiani, F., Baroni, C., Patil, G., Dali, A., Becucci, M., Hofbauer, S., Smulevich, G. 2023. The role of the hydrogen bond network in maintaining heme pocket stability and protein function specificity of C. diphtheriae coproheme decarboxylase. Biomolecules, 13, 235, doi: 10.3390/biom13020235
Dali, A., Gabler, T., Sebastiani, F., Destinger, A., Furtmüller, P. G., Pfanzagl, V., Becucci, M., Smulevich, G., Hofbauer, S. 2023. Active site architecture of coproporphyrin ferrochelatase with its physiological substrate coproporphyrin III: propionate interactions and porphyrin core deformation. Protein Science, 32, e4534 doi: 10.1002/pro.4534
Sebastiani, F., Niccoli, C., Michlits, H., Risorti, R., Becucci, M., Hofbauer, S., Smulevich, G. 2022. Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial Corynebacterium diphtheriae. J. Raman Spectrosc., 53, 890-901, doi: 10.1002/jrs.6326
Sebastiani, F., Risorti, R., Niccoli, C., Michlits, H., Becucci, M., Hofbauer, S., Smulevich, G. 2022. An active site at work – the role of key residues in C. diphteriae, coproheme decarobxlyase. J. Inorg. Biochem., 229, 111718, doi: 10.1016/j.jinorgbio.2022.111718
Michlits, H., Valente, N., Mlynek G., Hofbauer, S. 2022. Initial steps to engineer coproheme decarboxylase to obtain stereospecific monovinyl, monopropionyl deuterohemes. Front. Bioeng. Biotechnol., 9, 807678, doi: 10.3389/fbioe.2021.807678
Gabler, T., Sebastiani, F., Helm, J., Dali, A., Obinger, C., Furtmüller, P. G., Smulevich, G., Hofbauer, S. 2022. Substrate specificity and complex stability of coproporphyrin ferrochelatase is governed by hydrogen-bonding interactions of the four propionate groups. FEBS J. 289, 1680-1699, doi: 10.1111/febs.16257
Sebastiani, F., Michlits, H., Lier, B., Becucci, M., Furtmüller, P. G., Oostenbrink, C., Obinger, C., Hofbauer, S., Smulevich, G. 2021. Insights into the mechanism of propionate decarboxylation in actinobacterial coproheme decarboxylase from Cornyebacterium diptheriae. Biophys. J., 120, 3600-3614, doi: 10.1016/j.bpj.2021.06.042
Hofbauer, S., Pfanzagl, V., Michlits, H., Schmidt, D., Obinger, C., Furtmüller, P. G. 2021. Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - one fold, multiple functions. Biochim. Biophys. Acta – Proteins Proteom., 1869, 140536, doi: 10.1016/j.bbapap.2020.140536
Pfanzagl, V., Beale, J.H., Michlits, H., Schmidt, D., Gabler, T., Obinger C., Djinović-Carugo, K., Hofbauer, S. 2020. X-ray induced photoreduction of heme metal centers rapidly induces active site perturbations in a protein-independent manner. J. Biol. Chem. 295, 13488-13501. doi: 10.1074/jbc.RA120.014087
Michlits, H., Lier, B., Pfanzagl, V., Djinović-Carugo, K., Furtmüller, P.G., Oostenbrink, C., Obinger, C., Hofbauer, S. 2020. Actinobacterial coproheme decarboxylases use histidine as distal base to promote Compound I formation. ACS Catal. 10, 5405-5418, doi: 10.1021/acscatal.0c00411
Hofbauer, S., Helm, J., Obinger, C., Djinović-Carugo, K., Furtmüller, P.G. 2020. Crystal structures and calorimetry reveal catalytically relevant binding mode of coproporphyrin and coproheme in coproporphyrin ferrochelatase. FEBS J. 287, 2779-2796. doi: 10.1111/febs.15164
Milazzo, L., Gabler, T., Pühringer, D., Jandova, Z., Maresch, D., Michlits, H., Pfanzagl, V., Djinović-Carugo, K., Oostenbrink, C., Furtmüller, P. G., Obinger, C., Smulevich, G., Hofbauer, S. 2019. Redox cofactor rotates during its stepwise decarboxylation - molecular mechanism of conversion of coproheme to heme b. ACS Catal., 9, 6766-6782, doi: 10.1021/acscatal.9b00963
Milazzo, L., Gabler, T., Pfanzagl, V., Michlits, H., Furtmüller, P. G., Obinger, C., Hofbauer, S., Smulevich, G. 2019. The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes: effect on structure and catalysis. J. Inorg. Biochem. 195, 61-70, doi: 10.1016/j.jinorgbio.2019.03.009
Milazzo, L., Hofbauer, S., Howes, B. D., Gabler, T., Furtmüller, P. G., Obinger, C., Smulevich, G. 2018. Insights into the active site of coproheme decarboxylase from Listeria monocytogenes. Biochemistry 57, 2044-2057. doi: 10.1021/acs.biochem.8b00186
Pfanzagl, V., Holcik, L, Maresch, D., Gorgone, G., Michlits, H., Furtmüller, P. G., Hofbauer, S. 2018. Coproheme decarboxylases - Phylogenetic prediction versus biochemical experiments. Arch. Biochem. Biophys. 640, 27-36. doi: 10.1016/j.abb.2018.01.005
Hofbauer, S., Mlynek G., Milazzo, L., Pühringer, D., Maresch, D., Schaffner, I., Furtmüller, P. G., Smulevich, G., Djinović-Carugo, K., Obinger, C. 2016. Hydrogen peroxide-mediated conversion of coproheme to heme b by HemQ - Lessons from the first crystal structure and kinetic studies. FEBS J. 283, 4386-4401. doi: 10.1111/febs.13930
Hofbauer, S., Dalla Sega, M., Scheiblbrandner, S., Jandova, Z., Schaffner, I., Mlynek, G., Djinović-Carugo, K., Battistuzzi, G., Furtmüller, P. G., Oostenbrink, C., Obinger, C. 2016. Chemistry and molecular dynamics simulations of heme b-HemQ and coproheme HemQ. Biochemistry 55, 5398-5412. doi: 10.1021/acs.biochem.6b00701
Hofbauer, S., Howes, B. D., Flego, N., Pirker, K. F., Schaffner, I., Mlynek, G., Djinović-Carugo, K., Furtmüller, P. G., Smulevich, G., Obinger, C. 2016. From chlorite dismutase towards HemQ - the role of the proximal H-bonding network in haeme binding. Biosci. Rep. 36, e00312. doi: 10.1042/BSR20150330
Hofbauer, S., Hagmüller, A., Schaffner, I., Mlynek, G., Krutzler, M., Stadlmayr, G., Pirker, K. F., Obinger, C., Daims, H., Djinović-Carugo, K., Furtmüller, P. G. 2015. Structure and heme-binding properties of HemQ (chlorite dismutase-like protein) from Listeria monocytogenes. Arch. Biochem. Biophys. 574, 36-48. doi: 10.1016/j.abb.2015.01.010