When applying an electric field to a particle in solution, a potential is build up at the slipping plane within the particle´s electric double layer. This potential is called zeta potential. In electrophoresis, this phenomenon is used to move charged particles towards the electrode of opposite charge. The velocity of a particle in an electric field is dependent on the strength of the electric field, the dielectric constant and the viscosity of the medium and the zeta potential. Laser Doppler Micro-Electrophoresis (LDE) uses light scattering techniques to measure the movement of charged particles in an electric field. If a laser beam is passed through a sample, light scattered from a moving particle experiences a frequency shift. A second beam, called the reference beam, is routed around the cell and combined with the scattered light beam, creating a fluctuating signal intensity where the rate of fluctuation is proportional to the speed of the particles. From the resulting frequency spectrum, information about electrophoretic mobility and hence the zeta potential can be obtained.
Static Light Scattering (SLS) is used to determine the molecular weight of proteins and polymers. Similar to DLS, particles in a solution are illuminated by a light source but instead of measuring the time dependent fluctuations in scattering intensity, SLS makes use of an averaged intensity of scattered light over a certain period. From this, not only the molecular weight of proteins but also the second virial coefficient A2 can be determined, a parameter describing the interaction strength between particles and solvent. The applicable molecular weight measurement range of the Zetasizer Nano ZSP is from a few hundred g/mol to 500.000 g/mol for linear proteins and over 20.000.000 g/mol for non-spherical proteins and polymers. Zetasizer Nano ZSP measures the intensity of scattered light of the samples at various concentrations and compares it with the scattering intensity of a standard (Toluene). This gives the so-called Debye plot and allows the determination of both the absolute molecular weight and the second virial coefficient.